These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 17159995)

  • 1. Structural insight into the substrate specificity of DNA Polymerase mu.
    Moon AF; Garcia-Diaz M; Bebenek K; Davis BJ; Zhong X; Ramsden DA; Kunkel TA; Pedersen LC
    Nat Struct Mol Biol; 2007 Jan; 14(1):45-53. PubMed ID: 17159995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining.
    Nick McElhinny SA; Havener JM; Garcia-Diaz M; Juárez R; Bebenek K; Kee BL; Blanco L; Kunkel TA; Ramsden DA
    Mol Cell; 2005 Aug; 19(3):357-66. PubMed ID: 16061182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural evidence for an in
    Loc'h J; Gerodimos CA; Rosario S; Tekpinar M; Lieber MR; Delarue M
    J Biol Chem; 2019 Jul; 294(27):10579-10595. PubMed ID: 31138645
    [TBL] [Abstract][Full Text] [Related]  

  • 4. End-bridging is required for pol mu to efficiently promote repair of noncomplementary ends by nonhomologous end joining.
    Davis BJ; Havener JM; Ramsden DA
    Nucleic Acids Res; 2008 May; 36(9):3085-94. PubMed ID: 18397950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sustained active site rigidity during synthesis by human DNA polymerase μ.
    Moon AF; Pryor JM; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC
    Nat Struct Mol Biol; 2014 Mar; 21(3):253-60. PubMed ID: 24487959
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creative template-dependent synthesis by human polymerase mu.
    Moon AF; Gosavi RA; Kunkel TA; Pedersen LC; Bebenek K
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):E4530-6. PubMed ID: 26240373
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural accommodation of ribonucleotide incorporation by the DNA repair enzyme polymerase Mu.
    Moon AF; Pryor JM; Ramsden DA; Kunkel TA; Bebenek K; Pedersen LC
    Nucleic Acids Res; 2017 Sep; 45(15):9138-9148. PubMed ID: 28911097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 20 years of DNA Polymerase μ, the polymerase that still surprises.
    Ghosh D; Raghavan SC
    FEBS J; 2021 Dec; 288(24):7230-7242. PubMed ID: 33786971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of a pol alpha family DNA polymerase from the hyperthermophilic archaeon Thermococcus sp. 9 degrees N-7.
    Rodriguez AC; Park HW; Mao C; Beese LS
    J Mol Biol; 2000 Jun; 299(2):447-62. PubMed ID: 10860752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solution structure of a viral DNA repair polymerase.
    Maciejewski MW; Shin R; Pan B; Marintchev A; Denninger A; Mullen MA; Chen K; Gryk MR; Mullen GP
    Nat Struct Biol; 2001 Nov; 8(11):936-41. PubMed ID: 11685238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DNA polymerase μ is a global player in the repair of non-homologous end-joining substrates.
    Chayot R; Montagne B; Ricchetti M
    DNA Repair (Amst); 2012 Jan; 11(1):22-34. PubMed ID: 22071146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA polymerase X of African swine fever virus: insertion fidelity on gapped DNA substrates and AP lyase activity support a role in base excision repair of viral DNA.
    García-Escudero R; García-Díaz M; Salas ML; Blanco L; Salas J
    J Mol Biol; 2003 Mar; 326(5):1403-12. PubMed ID: 12595253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lack of sugar discrimination by human Pol mu requires a single glycine residue.
    Ruiz JF; Juárez R; García-Díaz M; Terrados G; Picher AJ; González-Barrera S; Fernández de Henestrosa AR; Blanco L
    Nucleic Acids Res; 2003 Aug; 31(15):4441-9. PubMed ID: 12888504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes.
    Brautigam CA; Steitz TA
    Curr Opin Struct Biol; 1998 Feb; 8(1):54-63. PubMed ID: 9519297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solution structure of polymerase mu's BRCT Domain reveals an element essential for its role in nonhomologous end joining.
    DeRose EF; Clarkson MW; Gilmore SA; Galban CJ; Tripathy A; Havener JM; Mueller GA; Ramsden DA; London RE; Lee AL
    Biochemistry; 2007 Oct; 46(43):12100-10. PubMed ID: 17915942
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BRCT domain of DNA polymerase μ has DNA-binding activity and promotes the DNA polymerization activity.
    Matsumoto T; Go K; Hyodo M; Koiwai K; Maezawa S; Hayano T; Suzuki M; Koiwai O
    Genes Cells; 2012 Sep; 17(9):790-806. PubMed ID: 22897684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Basis for a New Templated Activity by Terminal Deoxynucleotidyl Transferase: Implications for V(D)J Recombination.
    Loc'h J; Rosario S; Delarue M
    Structure; 2016 Sep; 24(9):1452-63. PubMed ID: 27499438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Essential role for polymerase specialization in cellular nonhomologous end joining.
    Pryor JM; Waters CA; Aza A; Asagoshi K; Strom C; Mieczkowski PA; Blanco L; Ramsden DA
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):E4537-45. PubMed ID: 26240371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling DNA polymerase μ motions: subtle transitions before chemistry.
    Li Y; Schlick T
    Biophys J; 2010 Nov; 99(10):3463-72. PubMed ID: 21081096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Limited terminal transferase in human DNA polymerase mu defines the required balance between accuracy and efficiency in NHEJ.
    Andrade P; Martín MJ; Juárez R; López de Saro F; Blanco L
    Proc Natl Acad Sci U S A; 2009 Sep; 106(38):16203-8. PubMed ID: 19805281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.