BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 17160443)

  • 21. Reversible inhibition of the calvin cycle and activation of oxidative pentose phosphate cycle in isolated intact chloroplasts by hydrogen peroxide.
    Kaiser WM
    Planta; 1979 Jan; 145(4):377-82. PubMed ID: 24317766
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The oxidative pentose phosphate pathway in photosynthesis: a tale of two shunts.
    Xu Y; Schmiege SC; Sharkey TD
    New Phytol; 2024 Jun; 242(6):2453-2463. PubMed ID: 38567702
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Pentose phosphate pathway in rat colonic epithelium.
    Butler RN; Arora KK; Collins JG; Flanigan I; Lawson MJ; Roberts-Thomson IC; Williams JF
    Biochem Int; 1990 Oct; 22(2):249-60. PubMed ID: 1965276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chloroplast class I and class II aldolases are bifunctional for fructose-1,6-biphosphate and sedoheptulose-1,7-biphosphate cleavage in the Calvin cycle.
    Flechner A; Gross W; Martin WF; Schnarrenberger C
    FEBS Lett; 1999 Mar; 447(2-3):200-2. PubMed ID: 10214945
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The pentose phosphate pathway in rabbit liver. Studies on the metabolic sequence and quantitative role of the pentose phosphate cycle by using a system in situ.
    Williams JF; Rienits KG; Schofield PJ; Clark MG
    Biochem J; 1971 Aug; 123(5):923-43. PubMed ID: 5124395
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth.
    Miyagawa Y; Tamoi M; Shigeoka S
    Nat Biotechnol; 2001 Oct; 19(10):965-9. PubMed ID: 11581664
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Regulation of sedoheptulose-1,7-bisphosphatase by sedoheptulose-7-phosphate and glycerate, and of fructose-1,6-bisphosphatase by glycerate in spinach chloroplasts.
    Schimkat D; Heineke D; Heldt HW
    Planta; 1990 Apr; 181(1):97-103. PubMed ID: 24196680
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sedoheptulose accumulation under CO₂ enrichment in leaves of Kalanchoë pinnata: a novel mechanism to enhance C and P homeostasis?
    Ceusters J; Godts C; Peshev D; Vergauwen R; Dyubankova N; Lescrinier E; De Proft MP; Van den Ende W
    J Exp Bot; 2013 Apr; 64(6):1497-507. PubMed ID: 23378377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photosystem II regulation of macromolecule synthesis in the blue-green alga Aphanocapsa 6714.
    Pelroy RA; Kirk MR; Bassham JA
    J Bacteriol; 1976 Nov; 128(2):623-32. PubMed ID: 10279
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for the Calvin cycle and hexose monophosphate pathway in Thiobacillus ferrooxidans.
    Gale NL; Beck JV
    J Bacteriol; 1967 Oct; 94(4):1052-9. PubMed ID: 4293079
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pentose Phosphate Pathway Reactions in Photosynthesizing Cells.
    Sharkey TD
    Cells; 2021 Jun; 10(6):. PubMed ID: 34207480
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of photosynthetic carbon metabolism during phosphate limitation of photosynthesis in isolated spinach chloroplasts.
    Giersch C; Robinson SP
    Photosynth Res; 1987 Jan; 14(3):211-27. PubMed ID: 24430736
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biosynthesis of d-arabinose in Mycobacterium smegmatis: specific labeling from d-glucose.
    Klutts JS; Hatanaka K; Pan YT; Elbein AD
    Arch Biochem Biophys; 2002 Feb; 398(2):229-39. PubMed ID: 11831854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Introduction and metabolism of pentose and hexose phosphates in permeabilized Morris hepatoma 5123TC cells.
    Arora KK; Williams JF
    Cell Biochem Funct; 1987 Oct; 5(4):289-300. PubMed ID: 2445500
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Source of 12C in Calvin-Benson cycle intermediates and isoprene emitted from plant leaves fed with 13CO2.
    Sharkey TD; Preiser AL; Weraduwage SM; Gog L
    Biochem J; 2020 Sep; 477(17):3237-3252. PubMed ID: 32815532
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ribulose-1,5-bisphosphate carboxylase-oxygenase, other Calvin-cycle enzymes, and chlorophyll decrease when glucose is supplied to mature spinach leaves via the transpiration stream.
    Krapp A; Quick WP; Stitt M
    Planta; 1991 Dec; 186(1):58-69. PubMed ID: 24186575
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Carbon metabolism of chloroplasts in the dark: Oxidative pentose phosphate cycle versus glycolytic pathway.
    Kaiser WM; Bassham JA
    Planta; 1979 Jan; 144(2):193-200. PubMed ID: 24408693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photosynthetic carbon metabolism in isolated pea chloroplasts: metabolite levels and enzyme activities.
    Marques IA; Ford DM; Muschinek G; Anderson LE
    Arch Biochem Biophys; 1987 Feb; 252(2):458-66. PubMed ID: 3813547
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation of glucose-6-phosphate dehydrogenase in spinach chloroplasts by ribulose 1,5-diphosphate and NADPH/NADP+ ratios.
    Lendzian K; Bassham JA
    Biochim Biophys Acta; 1975 Aug; 396(2):260-75. PubMed ID: 239745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discovery of the canonical Calvin-Benson cycle.
    Sharkey TD
    Photosynth Res; 2019 May; 140(2):235-252. PubMed ID: 30374727
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.