These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 17160627)

  • 1. Simultaneous alpha/beta spin-state selection for (13)C and (15)N from a time-shared HSQC-IPAP experiment.
    Nolis P; Parella T
    J Biomol NMR; 2007 Jan; 37(1):65-77. PubMed ID: 17160627
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimum spin-state selection for all multiplicities in the acquisition dimension of the HSQC experiment.
    Nolis P; Espinosa JF; Parella T
    J Magn Reson; 2006 May; 180(1):39-50. PubMed ID: 16448830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SESAME-HSQC for simultaneous measurement of NH and CH scalar and residual dipolar couplings.
    Würtz P; Permi P
    Magn Reson Chem; 2007 Apr; 45(4):289-95. PubMed ID: 17310475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR profiling of biomolecules at natural abundance using 2D 1H-15N and 1H-13C multiplicity-separated (MS) HSQC spectra.
    Chen K; Freedberg DI; Keire DA
    J Magn Reson; 2015 Feb; 251():65-70. PubMed ID: 25562571
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Measurement of one-bond 13Calpha-1Halpha residual dipolar coupling constants in proteins by selective manipulation of CalphaHalpha spins.
    Ball G; Meenan N; Bromek K; Smith BO; Bella J; Uhrín D
    J Magn Reson; 2006 May; 180(1):127-36. PubMed ID: 16495100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analyses, extensions and comparison of three experimental schemes for measuring ((n)J(CH)+D(CH))-couplings at natural abundance.
    Kobzar K; Luy B
    J Magn Reson; 2007 May; 186(1):131-41. PubMed ID: 17336556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spin-state-selective experiment for measuring heteronuclear one-bond and homonuclear two-bond couplings from an HSQC-type spectrum.
    Permi P
    J Biomol NMR; 2002 Jan; 22(1):27-35. PubMed ID: 11885978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectroscopic labeling of A, S/T in the 1H-15N HSQC spectrum of uniformly (15N-13C) labeled proteins.
    Chugh J; Hosur RV
    J Magn Reson; 2008 Oct; 194(2):289-94. PubMed ID: 18706838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous measurement of J(HH) and two different (n)J(CH) coupling constants from a single multiply edited 2D cross-peak.
    Saurí J; Parella T
    Magn Reson Chem; 2013 Jul; 51(7):397-402. PubMed ID: 23649408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved accuracy of 15N-1H scalar and residual dipolar couplings from gradient-enhanced IPAP-HSQC experiments on protonated proteins.
    Yao L; Ying J; Bax A
    J Biomol NMR; 2009 Mar; 43(3):161-70. PubMed ID: 19205898
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of C',Calpha correlations in proteins using a new time- and sensitivity-optimal experiment.
    Lee D; Vögeli B; Pervushin K
    J Biomol NMR; 2005 Apr; 31(4):273-8. PubMed ID: 15928994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simultaneous CT-13C and VT-15N chemical shift labelling: application to 3D NOESY-CH3NH and 3D 13C,15N HSQC-NOESY-CH3NH.
    Uhrín D; Bramham J; Winder SJ; Barlow PN
    J Biomol NMR; 2000 Nov; 18(3):253-9. PubMed ID: 11142515
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A J(CH)-modulated 2D (HACACO)NH pulse scheme for quantitative measurement of (13)C(alpha)-(1)H(alpha) couplings in (15)N, (13)C-labeled proteins.
    Hitchens TK; McCallum SA; Rule GS
    J Magn Reson; 1999 Sep; 140(1):281-4. PubMed ID: 10479573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IPAP-HSQMBC: measurement of long-range heteronuclear coupling constants from spin-state selective multiplets.
    Gil S; Espinosa JF; Parella T
    J Magn Reson; 2010 Dec; 207(2):312-21. PubMed ID: 20952232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensitivity-enhanced IPAP-SOFAST-HMQC for fast-pulsing 2D NMR with reduced radiofrequency load.
    Kern T; Schanda P; Brutscher B
    J Magn Reson; 2008 Feb; 190(2):333-8. PubMed ID: 18078771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel 2D triple-resonance NMR experiments for sequential resonance assignments of proteins.
    Ding K; Gronenborn AM
    J Magn Reson; 2002 Jun; 156(2):262-8. PubMed ID: 12165262
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 1H(C) and 1H(N) total NOE correlations in a single 3D NMR experiment. 15N and 13C time-sharing in t1 and t2 dimensions for simultaneous data acquisition.
    Xia Y; Yee A; Arrowsmith CH; Gao X
    J Biomol NMR; 2003 Nov; 27(3):193-203. PubMed ID: 12975580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved accuracy in measuring one-bond and two-bond (15)N, (13)C (α) coupling constants in proteins by double-inphase/antiphase (DIPAP) spectroscopy.
    Löhr F; Reckel S; Stefer S; Dötsch V; Schmidt JM
    J Biomol NMR; 2011 Jun; 50(2):167-90. PubMed ID: 21647741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determination of global structure from distance and orientation constraints in biological solids using solid-state NMR spectroscopy.
    Andreas LB; Mehta AK; Mehta MA
    J Am Chem Soc; 2007 Dec; 129(49):15233-9. PubMed ID: 17990880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heteronuclear NMR spectroscopy for lysine NH(3) groups in proteins: unique effect of water exchange on (15)N transverse relaxation.
    Iwahara J; Jung YS; Clore GM
    J Am Chem Soc; 2007 Mar; 129(10):2971-80. PubMed ID: 17300195
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.