These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
275 related articles for article (PubMed ID: 17160706)
1. Study of on-line monitoring of lactate based on optical fibre sensor and in-channel mixing mechanism. Wu MH; Wang J; Taha T; Cui Z; Urban JP; Cui Z Biomed Microdevices; 2007 Apr; 9(2):167-74. PubMed ID: 17160706 [TBL] [Abstract][Full Text] [Related]
2. A SU-8/PDMS hybrid microfluidic device with integrated optical fibers for online monitoring of lactate. Wu MH; Cai H; Xu X; Urban JP; Cui ZF; Cui Z Biomed Microdevices; 2005 Dec; 7(4):323-9. PubMed ID: 16404510 [TBL] [Abstract][Full Text] [Related]
3. Development of high throughput optical sensor array for on-line pH monitoring in micro-scale cell culture environment. Wu MH; Lin JL; Wang J; Cui Z; Cui Z Biomed Microdevices; 2009 Feb; 11(1):265-73. PubMed ID: 18830696 [TBL] [Abstract][Full Text] [Related]
4. Rapid detection of Mycoplasma pneumonia in a microfluidic device using immunoagglutination assay and static light scattering. Kim K; Jung HS; Song JY; Lee MR; Kim KS; Suh KY Electrophoresis; 2009 Sep; 30(18):3206-11. PubMed ID: 19722211 [TBL] [Abstract][Full Text] [Related]
5. Absorption detection of enzymatic reaction using optical microfluidics based intermittent flow microreactor system. Chandrasekaran A; Packirisamy M IEE Proc Nanobiotechnol; 2006 Dec; 153(6):137-43. PubMed ID: 17187445 [TBL] [Abstract][Full Text] [Related]
6. Detection of fluorescence generated in microfluidic channel using in-fiber grooves and in-fiber microchannel sensors. Irawan R; Tjin SC Methods Mol Biol; 2009; 503():403-22. PubMed ID: 19151955 [TBL] [Abstract][Full Text] [Related]
8. Miniaturized dynamic light scattering instrumentation for use in microfluidic applications. Chastek TQ; Beers KL; Amis EJ Rev Sci Instrum; 2007 Jul; 78(7):072201. PubMed ID: 17672732 [TBL] [Abstract][Full Text] [Related]
9. Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Ryu KS; Shaikh K; Goluch E; Fan Z; Liu C Lab Chip; 2004 Dec; 4(6):608-13. PubMed ID: 15570373 [TBL] [Abstract][Full Text] [Related]
10. Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance. Wu H; Zhai J; Tian Y; Lu H; Wang X; Jia W; Liu B; Yang P; Xu Y; Wang H Lab Chip; 2004 Dec; 4(6):588-97. PubMed ID: 15570370 [TBL] [Abstract][Full Text] [Related]
11. Label-free quantitative DNA detection using the liquid core optical ring resonator. Suter JD; White IM; Zhu H; Shi H; Caldwell CW; Fan X Biosens Bioelectron; 2008 Feb; 23(7):1003-9. PubMed ID: 18036809 [TBL] [Abstract][Full Text] [Related]
13. Single cell level detection of Escherichia coli in microfluidic device. Han JH; Heinze BC; Yoon JY Biosens Bioelectron; 2008 Mar; 23(8):1303-6. PubMed ID: 18182284 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of a compact reflective long-period grating sensor with a cladding-mode-selective fiber end-face mirror. Jiang M; Zhang AP; Wang YC; Tam HY; He S Opt Express; 2009 Sep; 17(20):17976-82. PubMed ID: 19907586 [TBL] [Abstract][Full Text] [Related]
15. Electrochemical detection of cardiac troponin I using a microchip with the surface-functionalized poly(dimethylsiloxane) channel. Ko S; Kim B; Jo SS; Oh SY; Park JK Biosens Bioelectron; 2007 Aug; 23(1):51-9. PubMed ID: 17462876 [TBL] [Abstract][Full Text] [Related]