These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
983 related articles for article (PubMed ID: 17160707)
1. Quantitative measurement and control of oxygen levels in microfluidic poly(dimethylsiloxane) bioreactors during cell culture. Mehta G; Mehta K; Sud D; Song JW; Bersano-Begey T; Futai N; Heo YS; Mycek MA; Linderman JJ; Takayama S Biomed Microdevices; 2007 Apr; 9(2):123-34. PubMed ID: 17160707 [TBL] [Abstract][Full Text] [Related]
2. Microfluidic PDMS (polydimethylsiloxane) bioreactor for large-scale culture of hepatocytes. Leclerc E; Sakai Y; Fujii T Biotechnol Prog; 2004; 20(3):750-5. PubMed ID: 15176878 [TBL] [Abstract][Full Text] [Related]
3. A fast cell loading and high-throughput microfluidic system for long-term cell culture in zero-flow environments. Luo C; Zhu X; Yu T; Luo X; Ouyang Q; Ji H; Chen Y Biotechnol Bioeng; 2008 Sep; 101(1):190-5. PubMed ID: 18646225 [TBL] [Abstract][Full Text] [Related]
4. Fine temporal control of the medium gas content and acidity and on-chip generation of series of oxygen concentrations for cell cultures. Polinkovsky M; Gutierrez E; Levchenko A; Groisman A Lab Chip; 2009 Apr; 9(8):1073-84. PubMed ID: 19350089 [TBL] [Abstract][Full Text] [Related]
5. A microfluidic platform for 3-dimensional cell culture and cell-based assays. Kim MS; Yeon JH; Park JK Biomed Microdevices; 2007 Feb; 9(1):25-34. PubMed ID: 17103048 [TBL] [Abstract][Full Text] [Related]
7. Stable immobilization of rat hepatocytes as hemispheroids onto collagen-conjugated poly-dimethylsiloxane (PDMS) surfaces: importance of direct oxygenation through PDMS for both formation and function. Nishikawa M; Yamamoto T; Kojima N; Kikuo K; Fujii T; Sakai Y Biotechnol Bioeng; 2008 Apr; 99(6):1472-81. PubMed ID: 17969156 [TBL] [Abstract][Full Text] [Related]
11. In-situ measurement of cellular microenvironments in a microfluidic device. Lin Z; Cherng-Wen T; Roy P; Trau D Lab Chip; 2009 Jan; 9(2):257-62. PubMed ID: 19107282 [TBL] [Abstract][Full Text] [Related]
14. In situ micropatterning technique by cell crushing for co-cultures inside microfluidic biochips. Leclerc E; El Kirat K; Griscom L Biomed Microdevices; 2008 Apr; 10(2):169-77. PubMed ID: 17849187 [TBL] [Abstract][Full Text] [Related]
15. Mass transport and shear stress in a microchannel bioreactor: numerical simulation and dynamic similarity. Zeng Y; Lee TS; Yu P; Roy P; Low HT J Biomech Eng; 2006 Apr; 128(2):185-93. PubMed ID: 16524329 [TBL] [Abstract][Full Text] [Related]
16. Optical imaging in microfluidic bioreactors enables oxygen monitoring for continuous cell culture. Sud D; Mehta G; Mehta K; Linderman J; Takayama S; Mycek MA J Biomed Opt; 2006; 11(5):050504. PubMed ID: 17092147 [TBL] [Abstract][Full Text] [Related]
17. Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance. Wu H; Zhai J; Tian Y; Lu H; Wang X; Jia W; Liu B; Yang P; Xu Y; Wang H Lab Chip; 2004 Dec; 4(6):588-97. PubMed ID: 15570370 [TBL] [Abstract][Full Text] [Related]
18. Development of an integrated microfluidic platform for dynamic oxygen sensing and delivery in a flowing medium. Vollmer AP; Probstein RF; Gilbert R; Thorsen T Lab Chip; 2005 Oct; 5(10):1059-66. PubMed ID: 16175261 [TBL] [Abstract][Full Text] [Related]
19. A polydimethylsiloxane-polycarbonate hybrid microfluidic device capable of generating perpendicular chemical and oxygen gradients for cell culture studies. Chang CW; Cheng YJ; Tu M; Chen YH; Peng CC; Liao WH; Tung YC Lab Chip; 2014 Oct; 14(19):3762-72. PubMed ID: 25096368 [TBL] [Abstract][Full Text] [Related]
20. Parallel microfluidic networks for studying cellular response to chemical modulation. Liu D; Wang L; Zhong R; Li B; Ye N; Liu X; Lin B J Biotechnol; 2007 Sep; 131(3):286-92. PubMed ID: 17706314 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]