BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 17161425)

  • 1. VP4 protein from human rhinovirus 14 is released by pressure and locked in the capsid by the antiviral compound WIN.
    Gonçalves RB; Mendes YS; Soares MR; Katpally U; Smith TJ; Silva JL; Oliveira AC
    J Mol Biol; 2007 Feb; 366(1):295-306. PubMed ID: 17161425
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antiviral agent blocks breathing of the common cold virus.
    Lewis JK; Bothner B; Smith TJ; Siuzdak G
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):6774-8. PubMed ID: 9618488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular dynamics simulations of human rhinovirus and an antiviral compound.
    Speelman B; Brooks BR; Post CB
    Biophys J; 2001 Jan; 80(1):121-9. PubMed ID: 11159387
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural studies on human rhinovirus 14 drug-resistant compensation mutants.
    Hadfield AT; Oliveira MA; Kim KH; Minor I; Kremer MJ; Heinz BA; Shepard D; Pevear DC; Rueckert RR; Rossmann MG
    J Mol Biol; 1995 Oct; 253(1):61-73. PubMed ID: 7473717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human rhinovirus 3 at 3.0 A resolution.
    Zhao R; Pevear DC; Kremer MJ; Giranda VL; Kofron JA; Kuhn RJ; Rossmann MG
    Structure; 1996 Oct; 4(10):1205-20. PubMed ID: 8939746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics investigation of the effect of an antiviral compound on human rhinovirus.
    Phelps DK; Post CB
    Protein Sci; 1999 Nov; 8(11):2281-9. PubMed ID: 10595531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. WIN 52035-2 inhibits both attachment and eclipse of human rhinovirus 14.
    Shepard DA; Heinz BA; Rueckert RR
    J Virol; 1993 Apr; 67(4):2245-54. PubMed ID: 8383239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of thermal denaturation of human rhinoviruses in the presence of anti-viral capsid binders analyzed by capillary electrophoresis.
    Okun VM; Nizet S; Blaas D; Kenndler E
    Electrophoresis; 2002 Mar; 23(6):896-902. PubMed ID: 11920874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissociation of an antiviral compound from the internal pocket of human rhinovirus 14 capsid.
    Li Y; Zhou Z; Post CB
    Proc Natl Acad Sci U S A; 2005 May; 102(21):7529-34. PubMed ID: 15899980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural analysis of antiviral agents that interact with the capsid of human rhinoviruses.
    Badger J; Minor I; Oliveira MA; Smith TJ; Rossmann MG
    Proteins; 1989; 6(1):1-19. PubMed ID: 2558377
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human rhinovirus 14 complexed with fragments of active antiviral compounds.
    Bibler-Muckelbauer JK; Kremer MJ; Rossmann MG; Diana GD; Dutko FJ; Pevear DC; McKinlay MA
    Virology; 1994 Jul; 202(1):360-9. PubMed ID: 8009848
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The refined structure of human rhinovirus 16 at 2.15 A resolution: implications for the viral life cycle.
    Hadfield AT; Lee Wm; Zhao R; Oliveira MA; Minor I; Rueckert RR; Rossmann MG
    Structure; 1997 Mar; 5(3):427-41. PubMed ID: 9083115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Human rhinovirus capsid dynamics is controlled by canyon flexibility.
    Reisdorph N; Thomas JJ; Katpally U; Chase E; Harris K; Siuzdak G; Smith TJ
    Virology; 2003 Sep; 314(1):34-44. PubMed ID: 14517058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virus stability and protein-nucleic acid interaction as studied by high-pressure effects on nodaviruses.
    Schwarcz WD; Barroso SP; Gomes AM; Johnson JE; Schneemann A; Oliveira AC; Silva JL
    Cell Mol Biol (Noisy-le-grand); 2004 Jun; 50(4):419-27. PubMed ID: 15529751
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pressure-induced formation of inactive triple-shelled rotavirus particles is associated with changes in the spike protein Vp4.
    Pontes L; Cordeiro Y; Giongo V; Villas-Boas M; Barreto A; Araújo JR; Silva JL
    J Mol Biol; 2001 Apr; 307(5):1171-9. PubMed ID: 11292333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Labeling of capsid proteins and genomic RNA of human rhinovirus with two different fluorescent dyes for selective detection by capillary electrophoresis.
    Kremser L; Petsch M; Blaas D; Kenndler E
    Anal Chem; 2004 Dec; 76(24):7360-5. PubMed ID: 15595880
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel basis of capsid stabilization by antiviral compounds.
    Phelps DK; Post CB
    J Mol Biol; 1995 Dec; 254(4):544-51. PubMed ID: 7500332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Binding affinities of structurally related human rhinovirus capsid-binding compounds are related to their activities against human rhinovirus type 14.
    Fox MP; McKinlay MA; Diana GD; Dutko FJ
    Antimicrob Agents Chemother; 1991 Jun; 35(6):1040-7. PubMed ID: 1656851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antiviral capsid-binding compounds can inhibit the adsorption of minor receptor rhinoviruses.
    Dewindt B; van Eemeren K; Andries K
    Antiviral Res; 1994 Sep; 25(1):67-72. PubMed ID: 7811059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-distance correlations of rhinovirus capsid dynamics contribute to uncoating and antiviral activity.
    Roy A; Post CB
    Proc Natl Acad Sci U S A; 2012 Apr; 109(14):5271-6. PubMed ID: 22440750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.