BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 17161514)

  • 1. Investigating the role of the aryl hydrocarbon receptor in benzene-initiated toxicity in vitro.
    Badham HJ; Winn LM
    Toxicology; 2007 Jan; 229(3):177-85. PubMed ID: 17161514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ligand-independent activation of AhR by hydroquinone mediates benzene-induced hematopoietic toxicity.
    Yang X; Li C; Yu G; Sun L; Guo S; Sai L; Bo C; Xing C; Shao H; Peng C; Jia Q
    Chem Biol Interact; 2022 Mar; 355():109845. PubMed ID: 35123993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of c-MYB in benzene-initiated toxicity.
    Wan J; Badham HJ; Winn L
    Chem Biol Interact; 2005 May; 153-154():171-8. PubMed ID: 15935814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydroquinone triggers pyroptosis and endoplasmic reticulum stress via AhR-regulated oxidative stress in human lymphocytes.
    Yang X; Dong S; Li C; Li M; Xing C; He J; Peng C; Shao H; Jia Q
    Toxicol Lett; 2023 Mar; 376():39-50. PubMed ID: 36646296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How benzene and its metabolites affect human marrow derived mesenchymal stem cells.
    Zolghadr F; Sadeghizadeh M; Amirizadeh N; Hosseinkhani S; Nazem S
    Toxicol Lett; 2012 Oct; 214(2):145-53. PubMed ID: 22960397
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytochromes P450 in benzene metabolism and involvement of their metabolites and reactive oxygen species in toxicity.
    Gut I; Nedelcheva V; Soucek P; Stopka P; Tichavská B
    Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1211-8. PubMed ID: 9118895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aryl hydrocarbon receptor mediates benzene-induced hematotoxicity.
    Yoon BI; Hirabayashi Y; Kawasaki Y; Kodama Y; Kaneko T; Kanno J; Kim DY; Fujii-Kuriyama Y; Inoue T
    Toxicol Sci; 2002 Nov; 70(1):150-6. PubMed ID: 12388843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Differences in xenobiotic detoxifying activities between bone marrow stromal cells from mice and rats: implications for benzene-induced hematotoxicity.
    Zhu H; Li Y; Trush MA
    J Toxicol Environ Health; 1995 Oct; 46(2):183-201. PubMed ID: 7563217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Benzene-induced bone-marrow toxicity: a hematopoietic stem-cell-specific, aryl hydrocarbon receptor-mediated adverse effect.
    Hirabayashi Y; Inoue T
    Chem Biol Interact; 2010 Mar; 184(1-2):252-8. PubMed ID: 20035730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of aryl hydrocarbon receptor and the reactive oxygen species in the modulation of glutathione transferase by heavy metals in murine hepatoma cell lines.
    Korashy HM; El-Kadi AO
    Chem Biol Interact; 2006 Sep; 162(3):237-48. PubMed ID: 16914127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Benzene-induced hematopoietic toxicity transmitted by AhR in wild-type mouse and nullified by repopulation with AhR-deficient bone marrow cells: time after benzene treatment and recovery.
    Hirabayashi Y; Yoon BI; Li GX; Fujii-Kuriyama Y; Kaneko T; Kanno J; Inoue T
    Chemosphere; 2008 Aug; 73(1 Suppl):S290-4. PubMed ID: 18514254
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Essential role of Nrf2 in protection against hydroquinone- and benzoquinone-induced cytotoxicity.
    Rubio V; Zhang J; Valverde M; Rojas E; Shi ZZ
    Toxicol In Vitro; 2011 Mar; 25(2):521-9. PubMed ID: 21059386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of human DNA topoisomerase II by hydroquinone and p-benzoquinone, reactive metabolites of benzene.
    Hutt AM; Kalf GF
    Environ Health Perspect; 1996 Dec; 104 Suppl 6(Suppl 6):1265-9. PubMed ID: 9118903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Endothelin-1-mediated increase in reactive oxygen species and NADPH Oxidase activity in hearts of aryl hydrocarbon receptor (AhR) null mice.
    Lund AK; Peterson SL; Timmins GS; Walker MK
    Toxicol Sci; 2005 Nov; 88(1):265-73. PubMed ID: 16107552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential gene expression profiles of human leukemia cell lines exposed to benzene and its metabolites.
    Sarma SN; Kim YJ; Ryu JC
    Environ Toxicol Pharmacol; 2011 Sep; 32(2):285-95. PubMed ID: 21843810
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent binding of quinones activates the Ah receptor in Hepa1c1c7 cells.
    Abiko Y; Puga A; Kumagai Y
    J Toxicol Sci; 2015 Dec; 40(6):873-86. PubMed ID: 26558468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benzo[a]pyrene, 3-methylcholanthrene and beta-naphthoflavone induce oxidative stress in hepatoma hepa 1c1c7 Cells by an AHR-dependent pathway.
    Elbekai RH; Korashy HM; Wills K; Gharavi N; El-Kadi AO
    Free Radic Res; 2004 Nov; 38(11):1191-200. PubMed ID: 15621696
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activation of aryl hydrocarbon receptor reduces carbendazim-induced cell death.
    Wei KL; Chen FY; Lin CY; Gao GL; Kao WY; Yeh CH; Chen CR; Huang HC; Tsai WR; Jong KJ; Li WJ; Su JG
    Toxicol Appl Pharmacol; 2016 Sep; 306():86-97. PubMed ID: 27286660
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dietary flavonols quercetin and kaempferol are ligands of the aryl hydrocarbon receptor that affect CYP1A1 transcription differentially.
    Ciolino HP; Daschner PJ; Yeh GC
    Biochem J; 1999 Jun; 340 ( Pt 3)(Pt 3):715-22. PubMed ID: 10359656
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A potential endogenous ligand for the aryl hydrocarbon receptor has potent agonist activity in vitro and in vivo.
    Henry EC; Bemis JC; Henry O; Kende AS; Gasiewicz TA
    Arch Biochem Biophys; 2006 Jun; 450(1):67-77. PubMed ID: 16545771
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.