BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 17162521)

  • 1. Fatigue test of low-cost flexible-shank monolimb trans-tibial prosthesis.
    Lee WC; Zhang M
    Prosthet Orthot Int; 2006 Dec; 30(3):305-15. PubMed ID: 17162521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of monolimb using finite element modelling and statistics-based Taguchi method.
    Lee WC; Zhang M
    Clin Biomech (Bristol, Avon); 2005 Aug; 20(7):759-66. PubMed ID: 15963612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A numerical approach to evaluate the fatigue life of monolimb.
    Chen NZ; Lee WC; Zhang M
    Med Eng Phys; 2006 Apr; 28(3):290-6. PubMed ID: 16112888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gait analysis of low-cost flexible-shank transtibial prostheses.
    Lee WC; Zhang M; Chan PP; Boone DA
    IEEE Trans Neural Syst Rehabil Eng; 2006 Sep; 14(3):370-7. PubMed ID: 17009497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Influence of wall thickness on the stress distribution within transtibial monolimb].
    Liu Z; Fan Y; Zhang M; Jiang W; Pu F; Chen J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):562-5. PubMed ID: 15357432
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite-element analysis to determine effect of monolimb flexibility on structural strength and interaction between residual limb and prosthetic socket.
    Lee WC; Zhang M; Boone DA; Contoyannis B
    J Rehabil Res Dev; 2004; 41(6A):775-86. PubMed ID: 15685466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A robust design procedure for improvement of quality of lower-limb prosthesis.
    Chen NZ; Lee WC; Zhang M
    Biomed Mater Eng; 2006; 16(5):309-18. PubMed ID: 17075166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fatigue resistance analysis of tibial baseplate in total knee prosthesis--an in vitro biomechanical study.
    Yu TC; Huang CH; Hsieh CH; Liau JJ; Huang CH; Cheng CK
    Clin Biomech (Bristol, Avon); 2006 Feb; 21(2):147-51. PubMed ID: 16246471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental and numerical predictions of the ultimate strength of a low-cost composite transtibial prosthesis.
    Hahl J; Taya M
    J Rehabil Res Dev; 2000; 37(4):405-13. PubMed ID: 11028696
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [The 3D finite element stress analysis of transtibial monolimb].
    Liu Z; Fan Y; Zhang M; Jiang W
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Dec; 20(4):622-5. PubMed ID: 14716861
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite element modeling of the contact interface between trans-tibial residual limb and prosthetic socket.
    Lee WC; Zhang M; Jia X; Cheung JT
    Med Eng Phys; 2004 Oct; 26(8):655-62. PubMed ID: 15471693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and testing of thermoplastic structural components for modular prostheses.
    Coombes AG; MacCoughlan J
    Prosthet Orthot Int; 1988 Apr; 12(1):19-40. PubMed ID: 3399367
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fatigue strength testing of hip stems with statistical analysis.
    Ploeg HL; Wevers HW; Wyss UP; Bürgi M
    Biomed Mater Eng; 1999; 9(4):243-63. PubMed ID: 10674178
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increasing bending strength of tibial locking screws: mechanical tests and finite element analyses.
    Chao CK; Hsu CC; Wang JL; Lin J
    Clin Biomech (Bristol, Avon); 2007 Jan; 22(1):59-66. PubMed ID: 16959388
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses.
    Chao CK; Hsu CC; Wang JL; Lin J
    J Spinal Disord Tech; 2008 Apr; 21(2):130-8. PubMed ID: 18391719
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of an automated device to measure sagittal plane stiffness of an articulated ankle-foot orthosis.
    Kobayashi T; Leung AK; Akazawa Y; Naito H; Tanaka M; Hutchins SW
    Prosthet Orthot Int; 2010 Dec; 34(4):439-48. PubMed ID: 20681928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of prosthetic foot roll-over shape arc length on the gait of trans-tibial prosthesis users.
    Hansen AH; Meier MR; Sessoms PH; Childress DS
    Prosthet Orthot Int; 2006 Dec; 30(3):286-99. PubMed ID: 17162519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural testing of a juvenile prosthetic foot pylon.
    Self BP; Wilcox R; Daniel B; Kawatski A; Rojas J; Webb B; Bearden K
    Biomed Sci Instrum; 2004; 40():70-5. PubMed ID: 15133937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a finite element model of a transtibial socket liner--an initial study.
    Fisher C; Simpson G; Reynolds D
    Biomed Sci Instrum; 1999; 35():39-44. PubMed ID: 11143383
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Finite element stress analysis and fatigue behavior of cast circumferential clasps.
    Sandu L; Faur N; Bortun C
    J Prosthet Dent; 2007 Jan; 97(1):39-44. PubMed ID: 17280890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.