BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

68 related articles for article (PubMed ID: 17162888)

  • 21. Acute intensive insulin therapy exacerbates diabetic blood-retinal barrier breakdown via hypoxia-inducible factor-1alpha and VEGF.
    Poulaki V; Qin W; Joussen AM; Hurlbut P; Wiegand SJ; Rudge J; Yancopoulos GD; Adamis AP
    J Clin Invest; 2002 Mar; 109(6):805-15. PubMed ID: 11901189
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of the receptor for advanced glycation endproducts (RAGE) in retinal vasodegenerative pathology during diabetes in mice.
    McVicar CM; Ward M; Colhoun LM; Guduric-Fuchs J; Bierhaus A; Fleming T; Schlotterer A; Kolibabka M; Hammes HP; Chen M; Stitt AW
    Diabetologia; 2015 May; 58(5):1129-37. PubMed ID: 25687235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Expression of aquaporins in the retina of diabetic rats.
    Hollborn M; Dukic-Stefanovic S; Pannicke T; Ulbricht E; Reichenbach A; Wiedemann P; Bringmann A; Kohen L
    Curr Eye Res; 2011 Sep; 36(9):850-6. PubMed ID: 21851171
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effect of Cordyceps sinensis on expressions of HIF-1α and VEGF in the kidney of rats with diabetic nephropathy].
    Yuan M; Tang R; Zhou Q; Liu K; Xiao Z; Pouranan V
    Zhong Nan Da Xue Xue Bao Yi Xue Ban; 2013 May; 38(5):448-57. PubMed ID: 23719521
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High-salt loading exacerbates increased retinal content of aquaporins AQP1 and AQP4 in rats with diabetic retinopathy.
    Qin Y; Xu G; Fan J; Witt RE; Da C
    Exp Eye Res; 2009 Nov; 89(5):741-7. PubMed ID: 19596320
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of high mobility group box 1 (HMGB-1) in the diabetic retinopathy inflammation and apoptosis.
    Yu Y; Yang L; Lv J; Huang X; Yi J; Pei C; Shao Y
    Int J Clin Exp Pathol; 2015; 8(6):6807-13. PubMed ID: 26261566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Downregulation of the atrial natriuretic peptide/natriuretic peptide receptor-C system in the early stages of diabetic retinopathy in the rat.
    Rollín R; Mediero A; Fernández-Cruz A; Fernández-Durango R
    Mol Vis; 2005 Mar; 11():216-24. PubMed ID: 15789000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Erythropoietin exerts a neuroprotective function against glutamate neurotoxicity in experimental diabetic retina.
    Gu L; Xu H; Wang F; Xu G; Sinha D; Wang J; Xu JY; Tian H; Gao F; Li W; Lu L; Zhang J; Xu GT
    Invest Ophthalmol Vis Sci; 2014 Oct; 55(12):8208-22. PubMed ID: 25335981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kallikrein-binding protein levels are reduced in the retinas of streptozotocin-induced diabetic rats.
    Hatcher HC; Ma JX; Chao J; Chao L; Ottlecz A
    Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):658-64. PubMed ID: 9071220
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diabetes: a potential enhancer of retinal injury in rat retinas.
    Oshitari T; Roy S
    Neurosci Lett; 2005 Dec; 390(1):25-30. PubMed ID: 16154273
    [TBL] [Abstract][Full Text] [Related]  

  • 31. KIOM-79 prevents apoptotic cell death and AGEs accumulation in retinas of diabetic db/db mice.
    Sohn EJ; Kim YS; Kim CS; Lee YM; Kim JS
    J Ethnopharmacol; 2009 Jan; 121(1):171-4. PubMed ID: 19013511
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impaired apparent ion demand in experimental diabetic retinopathy: correction by lipoic Acid.
    Berkowitz BA; Roberts R; Stemmler A; Luan H; Gradianu M
    Invest Ophthalmol Vis Sci; 2007 Oct; 48(10):4753-8. PubMed ID: 17898301
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altered expression of genes related to blood-retina barrier disruption in streptozotocin-induced diabetes.
    Klaassen I; Hughes JM; Vogels IM; Schalkwijk CG; Van Noorden CJ; Schlingemann RO
    Exp Eye Res; 2009 Jun; 89(1):4-15. PubMed ID: 19284967
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hesperetin rescues retinal oxidative stress, neuroinflammation and apoptosis in diabetic rats.
    Kumar B; Gupta SK; Srinivasan BP; Nag TC; Srivastava S; Saxena R; Jha KA
    Microvasc Res; 2013 May; 87():65-74. PubMed ID: 23376836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Intravitreous vascular endothelial growth factor and hypoxia-inducible factor 1a in patients with proliferative diabetic retinopathy.
    Wang X; Wang G; Wang Y
    Am J Ophthalmol; 2009 Dec; 148(6):883-9. PubMed ID: 19837381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Oxidative damage in the retinal mitochondria of diabetic mice: possible protection by superoxide dismutase.
    Kanwar M; Chan PS; Kern TS; Kowluru RA
    Invest Ophthalmol Vis Sci; 2007 Aug; 48(8):3805-11. PubMed ID: 17652755
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Loss of cholinergic and dopaminergic amacrine cells in streptozotocin-diabetic rat and Ins2Akita-diabetic mouse retinas.
    Gastinger MJ; Singh RS; Barber AJ
    Invest Ophthalmol Vis Sci; 2006 Jul; 47(7):3143-50. PubMed ID: 16799061
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inverse relationship between the intraretinal concentration of bioavailable nitric oxide and blood glucose in early experimental diabetic retinopathy.
    Guthrie MJ; Osswald CR; Kang-Mieler JJ
    Invest Ophthalmol Vis Sci; 2014 Dec; 56(1):37-44. PubMed ID: 25503458
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress.
    Kowluru RA; Kowluru V; Xiong Y; Ho YS
    Free Radic Biol Med; 2006 Oct; 41(8):1191-6. PubMed ID: 17015165
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increased Expression of Ecto-NOX Disulfide-thiol Exchanger 1 (ENOX1) in Diabetic Mice Retina and its Involvement in Diabetic Retinopathy Development.
    Huang YC; Liu SP; Chen SY; Lin JM; Lin HJ; Lei YJ; Wang YH; Huang WT; Liao WL; Tsai FJ
    In Vivo; 2019; 33(6):1801-1806. PubMed ID: 31662505
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.