These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 17163023)

  • 21. [Catalytic stability in wet air oxidation of carboxylic acids over ZnFe0.25Al1.75 O4 catalyst].
    Xu AH; Yang M; Du HZ; Peng FY; Sun CL
    Huan Jing Ke Xue; 2007 Jul; 28(7):1455-9. PubMed ID: 17891951
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DEAMOX--new biological nitrogen removal process based on anaerobic ammonia oxidation coupled to sulphide-driven conversion of nitrate into nitrite.
    Kalyuzhnyi S; Gladchenko M; Mulder A; Versprille B
    Water Res; 2006 Nov; 40(19):3637-45. PubMed ID: 16893559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Carbon and nitrogen removal from glucose-glycine melanoidins solution as a model of distillery wastewater by catalytic wet air oxidation.
    Phuong Thu L; Michèle B
    J Hazard Mater; 2016 Jun; 310():108-16. PubMed ID: 26900982
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wet air oxidation of epoxy acrylate monomer industrial wastewater.
    Yang S; Liu Z; Huang X; Zhang B
    J Hazard Mater; 2010 Jun; 178(1-3):786-91. PubMed ID: 20207076
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Degradation process analysis of the azo dyes by catalytic wet air oxidation with catalyst CuO/γ-Al2O3.
    Hua L; Ma H; Zhang L
    Chemosphere; 2013 Jan; 90(2):143-9. PubMed ID: 22795071
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Catalytic wet oxidation of ammonia: why is N2 formed preferentially against NO3 -?
    Lee DK; Cho JS; Yoon WL
    Chemosphere; 2005 Oct; 61(4):573-8. PubMed ID: 16202811
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Selective wet-air oxidation of diluted aqueous ammonia solutions over supported Ni catalysts.
    Kaewpuang-Ngam S; Inazu K; Kobayashi T; Aika KI
    Water Res; 2004 Feb; 38(3):778-82. PubMed ID: 14723948
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Removal of organic matter and ammonia nitrogen from landfill leachate by ultrasound.
    Wang S; Wu X; Wang Y; Li Q; Tao M
    Ultrason Sonochem; 2008 Sep; 15(6):933-7. PubMed ID: 18522871
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Treatment of landfill leachate using immobilized Phanerochaete chrysosporium loaded with nitrogen-doped TiO₂ nanoparticles.
    Hu L; Zeng G; Chen G; Dong H; Liu Y; Wan J; Chen A; Guo Z; Yan M; Wu H; Yu Z
    J Hazard Mater; 2016 Jan; 301():106-18. PubMed ID: 26355412
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Treatment of landfill leachate by combined aged-refuse bioreactor and electro-oxidation.
    Lei Y; Shen Z; Huang R; Wang W
    Water Res; 2007 Jun; 41(11):2417-26. PubMed ID: 17434200
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Removal of nitrogenous compounds by catalytic wet air oxidation. Kinetic study.
    Deiber G; Foussard JN; Debellefontaine H
    Environ Pollut; 1997; 96(3):311-9. PubMed ID: 15093397
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chemical denitrification for nitrogen removal from landfill leachate.
    Nikolić A; Hultman B
    Water Sci Technol; 2005; 52(10-11):509-16. PubMed ID: 16459828
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of pH, alkalinity and temperature during air stripping process for ammonia removal from landfill leachate.
    Campos JC; Moura D; Costa AP; Yokoyama L; Araujo FV; Cammarota MC; Cardillo L
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(9):1105-13. PubMed ID: 23573931
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rate of nitrate production during a two-stage nitrification batch reaction.
    Pratt S; Gapes D; Yuan Z; Keller J
    Water Sci Technol; 2004; 50(10):81-7. PubMed ID: 15656299
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical and toxicological evaluation of an emerging pollutant (enrofloxacin) by catalytic wet air oxidation and ozonation in aqueous solution.
    Li Y; Zhang F; Liang X; Yediler A
    Chemosphere; 2013 Jan; 90(2):284-91. PubMed ID: 22858256
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphene oxide as an effective catalyst for wet air oxidation of phenol.
    Yang S; Cui Y; Sun Y; Yang H
    J Hazard Mater; 2014 Sep; 280():55-62. PubMed ID: 25127389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electro-thermal treatment optimization of high concentration ammonia nitrogen by gaseous oxidation in liquid phase (GOLP).
    Cao LM; Yang J; Jia JP
    Water Sci Technol; 2011; 63(12):2896-901. PubMed ID: 22049716
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrogen removal during leachate treatment: comparison of simple and sophisticated systems.
    Vasel JL; Jupsin H; Annachhatre AP
    Water Sci Technol; 2004; 50(6):45-52. PubMed ID: 15536989
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The degradation of Isophorone by catalytic wet air oxidation on Ru/TiZrO4.
    Wei H; Yan X; Li X; He S; Sun C
    J Hazard Mater; 2013 Jan; 244-245():478-88. PubMed ID: 23183344
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Comparison of the treatment performance in fresh and mature landfill leachates by Fenton process].
    Tang QY; He PJ; Xu SY; Zheng Z; Shao LM
    Huan Jing Ke Xue; 2008 Nov; 29(11):3258-64. PubMed ID: 19186837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.