These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 17163665)

  • 1. Gene silencing activity of siRNAs with a ribo-difluorotoluyl nucleotide.
    Xia J; Noronha A; Toudjarska I; Li F; Akinc A; Braich R; Frank-Kamenetsky M; Rajeev KG; Egli M; Manoharan M
    ACS Chem Biol; 2006 Apr; 1(3):176-83. PubMed ID: 17163665
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure, stability and in vitro RNAi activity of oligoribonucleotides containing the ribo-difluorotoluyl nucleotide: insights into substrate requirements by the human RISC Ago2 enzyme.
    Li F; Pallan PS; Maier MA; Rajeev KG; Mathieu SL; Kreutz C; Fan Y; Sanghvi J; Micura R; Rozners E; Manoharan M; Egli M
    Nucleic Acids Res; 2007; 35(19):6424-38. PubMed ID: 17881374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, gene silencing, and molecular modeling studies of 4'-C-aminomethyl-2'-O-methyl modified small interfering RNAs.
    Gore KR; Nawale GN; Harikrishna S; Chittoor VG; Pandey SK; Höbartner C; Patankar S; Pradeepkumar PI
    J Org Chem; 2012 Apr; 77(7):3233-45. PubMed ID: 22372696
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical modification of siRNA.
    Chernolovskaya EL; Zenkova MA
    Curr Opin Mol Ther; 2010 Apr; 12(2):158-67. PubMed ID: 20373259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effects of thiophosphate substitutions on native siRNA gene silencing.
    Li ZY; Mao H; Kallick DA; Gorenstein DG
    Biochem Biophys Res Commun; 2005 Apr; 329(3):1026-30. PubMed ID: 15752758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of siRNA nuclease stability on the in vitro and in vivo kinetics of siRNA-mediated gene silencing.
    Bartlett DW; Davis ME
    Biotechnol Bioeng; 2007 Jul; 97(4):909-21. PubMed ID: 17154307
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA interference in vivo: toward synthetic small inhibitory RNA-based therapeutics.
    de Fougerolles A; Manoharan M; Meyers R; Vornlocher HP
    Methods Enzymol; 2005; 392():278-96. PubMed ID: 15644187
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A structure-activity relationship study of siRNAs with structural variations.
    Chang CI; Hong SW; Kim S; Lee DK
    Biochem Biophys Res Commun; 2007 Aug; 359(4):997-1003. PubMed ID: 17577577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of assembly of siRNA elements into RNA-induced silencing complex by fork-siRNA duplex carrying nucleotide mismatches at the 3'- or 5'-end of the sense-stranded siRNA element.
    Ohnishi Y; Tokunaga K; Hohjoh H
    Biochem Biophys Res Commun; 2005 Apr; 329(2):516-21. PubMed ID: 15737617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silencing activity of 2'-O-methyl modified anti-MDR1 siRNAs with mismatches in the central part of the duplexes.
    Petrova NS; Meschaninova MI; Venyaminova AG; Zenkova MA; Vlassov VV; Chernolovskaya EL
    FEBS Lett; 2011 Jul; 585(14):2352-6. PubMed ID: 21704032
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The gene-silencing efficiency of siRNA is strongly dependent on the local structure of mRNA at the targeted region.
    Luo KQ; Chang DC
    Biochem Biophys Res Commun; 2004 May; 318(1):303-10. PubMed ID: 15110788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Asymmetric RNA duplexes mediate RNA interference in mammalian cells.
    Sun X; Rogoff HA; Li CJ
    Nat Biotechnol; 2008 Dec; 26(12):1379-82. PubMed ID: 19029911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA interference in mammalian cells by siRNAs modified with morpholino nucleoside analogues.
    Zhang N; Tan C; Cai P; Zhang P; Zhao Y; Jiang Y
    Bioorg Med Chem; 2009 Mar; 17(6):2441-6. PubMed ID: 19233658
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA interference by 2',5'-linked nucleic acid duplexes in mammalian cells.
    Prakash TP; Kraynack B; Baker BF; Swayze EE; Bhat B
    Bioorg Med Chem Lett; 2006 Jun; 16(12):3238-40. PubMed ID: 16616491
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Competition potency of siRNA is specified by the 5'-half sequence of the guide strand.
    Yoo JW; Kim S; Lee DK
    Biochem Biophys Res Commun; 2008 Feb; 367(1):78-83. PubMed ID: 18164261
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and binding study of modified siRNAs with the Argonaute 2 PAZ domain by NMR spectroscopy.
    Maiti M; Nauwelaerts K; Lescrinier E; Herdewijn P
    Chemistry; 2011 Feb; 17(5):1519-28. PubMed ID: 21268154
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Palmitic acid-conjugated 21-nucleotide siRNA enhances gene-silencing activity.
    Kubo T; Yanagihara K; Takei Y; Mihara K; Morita Y; Seyama T
    Mol Pharm; 2011 Dec; 8(6):2193-203. PubMed ID: 21985606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of biaryl units into the 5' and 3' ends of sense and antisense strands of siRNA duplexes improves strand selectivity and nuclease resistance.
    Yoshikawa K; Ogata A; Matsuda C; Kohara M; Iba H; Kitade Y; Ueno Y
    Bioconjug Chem; 2011 Jan; 22(1):42-9. PubMed ID: 21141919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of nuclease-resistant fork-like small interfering RNA (fsiRNA).
    Chernolovskaya EL; Zenkova MA
    Methods Mol Biol; 2013; 942():153-68. PubMed ID: 23027050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 2'-O-methyl-modified anti-MDR1 fork-siRNA duplexes exhibiting high nuclease resistance and prolonged silencing activity.
    Petrova Kruglova NS; Meschaninova MI; Venyaminova AG; Zenkova MA; Vlassov VV; Chernolovskaya EL
    Oligonucleotides; 2010 Dec; 20(6):297-308. PubMed ID: 21028964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.