These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 17163700)

  • 1. Stabilization of liposomes through enzymatic polymerization of DNA.
    Ruysschaert T; Paquereau L; Winterhalter M; Fournier D
    Nano Lett; 2006 Dec; 6(12):2755-7. PubMed ID: 17163700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic fabrication of DNA nanostructures: extension of a self-assembled oligonucleotide monolayer on gold arrays.
    Chow DC; Lee WK; Zauscher S; Chilkoti A
    J Am Chem Soc; 2005 Oct; 127(41):14122-3. PubMed ID: 16218572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Labeling of double-stranded DNA by ROX-dideoxycytosine triphosphate using terminal deoxynucleotidyl transferase and separation by capillary electrophoresis.
    Figeys D; Renborg A; Dovichi NJ
    Anal Chem; 1994 Dec; 66(23):4382-3. PubMed ID: 7847633
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Detection of single- and double-strand DNA breaks after traumatic brain injury in rats: comparison of in situ labeling techniques using DNA polymerase I, the Klenow fragment of DNA polymerase I, and terminal deoxynucleotidyl transferase.
    Clark RSB ; Chen M; Kochanek PM; Watkins SC; Jin KL; Draviam R; Nathaniel PD; Pinto R; Marion DW; Graham SH
    J Neurotrauma; 2001 Jul; 18(7):675-89. PubMed ID: 11497094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing Terminal Deoxynucleotidyl Transferase Activity on Substrates with 3' Terminal Structures for Enzymatic De Novo DNA Synthesis.
    Barthel S; Palluk S; Hillson NJ; Keasling JD; Arlow DH
    Genes (Basel); 2020 Jan; 11(1):. PubMed ID: 31963235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Random Priming: Labeling of Purified DNA Fragments by Extension of Random Oligonucleotides.
    Green MR; Sambrook J
    Cold Spring Harb Protoc; 2019 Mar; 2019(3):. PubMed ID: 30824624
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of Terminal Deoxynucleotidyl Transferase Enzyme in Biotechnology.
    Ashley J; Potts IG; Olorunniji FJ
    Chembiochem; 2023 Mar; 24(5):e202200510. PubMed ID: 36342345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surface-initiated enzymatic polymerization of DNA.
    Chow DC; Chilkoti A
    Langmuir; 2007 Nov; 23(23):11712-7. PubMed ID: 17929953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controlling the Reversible Assembly of Liposomes through a Multistimuli Responsive Anchored DNA.
    Hernández-Ainsa S; Ricci M; Hilton L; Aviñó A; Eritja R; Keyser UF
    Nano Lett; 2016 Jul; 16(7):4462-6. PubMed ID: 27367802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic synthesis of fluorescent oligomers assembled on a DNA backbone.
    Cho Y; Kool ET
    Chembiochem; 2006 Apr; 7(4):669-72. PubMed ID: 16502476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amplified detection of genome-containing biological targets using terminal deoxynucleotidyl transferase-assisted rolling circle amplification.
    Du YC; Zhu YJ; Li XY; Kong DM
    Chem Commun (Camb); 2018 Jan; 54(6):682-685. PubMed ID: 29303169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Terminal Deoxynucleotidyl Transferase in the Synthesis and Modification of Nucleic Acids.
    Sarac I; Hollenstein M
    Chembiochem; 2019 Apr; 20(7):860-871. PubMed ID: 30451377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly of liposomes controlled by triple helix formation.
    Jakobsen U; Vogel S
    Bioconjug Chem; 2013 Sep; 24(9):1485-95. PubMed ID: 23885785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of a double helix DNA assembly by use of cross-linked oligonucleotides.
    Endo M; Majima T
    J Am Chem Soc; 2003 Nov; 125(45):13654-5. PubMed ID: 14599191
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Parallel, double-helix DNA nanostructures using interstrand cross-linked oligonucleotides with bismaleimide linkers.
    Endo M; Majima T
    Angew Chem Int Ed Engl; 2003 Dec; 42(46):5744-7. PubMed ID: 14661212
    [No Abstract]   [Full Text] [Related]  

  • 16. Single Primer Based Multisite Strand Displacement Reaction Amplification Strategy for Rapid Detection of Terminal Deoxynucleotidyl Transferase Activity.
    Liu X; Wang H; Deng K; Kwee S; Huang H; Tang L
    Anal Chem; 2019 Jun; 91(11):7482-7486. PubMed ID: 31082205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phe 771 of Escherichia coli DNA polymerase I (Klenow fragment) is the major site for the interaction with the template overhang and the stabilization of the pre-polymerase ternary complex.
    Srivastava A; Singh K; Modak MJ
    Biochemistry; 2003 Apr; 42(13):3645-54. PubMed ID: 12667054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrasensitive electrochemical DNA sensor based on the target induced structural switching and surface-initiated enzymatic polymerization.
    Wan Y; Wang P; Su Y; Zhu X; Yang S; Lu J; Gao J; Fan C; Huang Q
    Biosens Bioelectron; 2014 May; 55():231-6. PubMed ID: 24384265
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General method for modification of liposomes for encoded assembly on supported bilayers.
    Yoshina-Ishii C; Miller GP; Kraft ML; Kool ET; Boxer SG
    J Am Chem Soc; 2005 Feb; 127(5):1356-7. PubMed ID: 15686351
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crosslinking of diene-modified DNA with bis-maleimides.
    Tona R; Haner R
    Mol Biosyst; 2005 May; 1(1):93-8. PubMed ID: 16880969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.