These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 17163719)

  • 1. Multiexciton generation by a single photon in nanocrystals.
    Shabaev A; Efros AL; Nozik AJ
    Nano Lett; 2006 Dec; 6(12):2856-63. PubMed ID: 17163719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficiency of multiexciton generation in colloidal nanostructures.
    Shabaev A; Hellberg CS; Efros AL
    Acc Chem Res; 2013 Jun; 46(6):1242-51. PubMed ID: 23461547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exciton multiplication from first principles.
    Jaeger HM; Hyeon-Deuk K; Prezhdo OV
    Acc Chem Res; 2013 Jun; 46(6):1280-9. PubMed ID: 23459543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiple exciton collection in a sensitized photovoltaic system.
    Sambur JB; Novet T; Parkinson BA
    Science; 2010 Oct; 330(6000):63-6. PubMed ID: 20929804
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: implications for lasing and solar energy conversion.
    Klimov VI
    J Phys Chem B; 2006 Aug; 110(34):16827-45. PubMed ID: 16927970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-Matter Interaction and Lasing in Lead Halide Perovskites.
    Schlaus AP; Spencer MS; Zhu XY
    Acc Chem Res; 2019 Oct; 52(10):2950-2959. PubMed ID: 31571486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The quantum coherent mechanism for singlet fission: experiment and theory.
    Chan WL; Berkelbach TC; Provorse MR; Monahan NR; Tritsch JR; Hybertsen MS; Reichman DR; Gao J; Zhu XY
    Acc Chem Res; 2013 Jun; 46(6):1321-9. PubMed ID: 23581494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theory of highly efficient multiexciton generation in type-II nanorods.
    Eshet H; Baer R; Neuhauser D; Rabani E
    Nat Commun; 2016 Oct; 7():13178. PubMed ID: 27725668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers.
    Schaller RD; Sykora M; Pietryga JM; Klimov VI
    Nano Lett; 2006 Mar; 6(3):424-9. PubMed ID: 16522035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly Efficient Multiple Exciton Generation and Harvesting in Few-Layer Black Phosphorus and Heterostructure.
    Zhou Q; Zhou H; Tao W; Zheng Y; Chen Y; Zhu H
    Nano Lett; 2020 Nov; 20(11):8212-8219. PubMed ID: 33044075
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distribution of multiexciton generation rates in CdSe and InAs nanocrystals.
    Rabani E; Baer R
    Nano Lett; 2008 Dec; 8(12):4488-92. PubMed ID: 19367885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple exciton generation by a single photon in single-walled carbon nanotubes.
    Konabe S; Okada S
    Phys Rev Lett; 2012 Jun; 108(22):227401. PubMed ID: 23003652
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of quantum and dielectric confinement on the exciton-exciton interaction energy in type II core/shell semiconductor nanocrystals.
    Piryatinski A; Ivanov SA; Tretiak S; Klimov VI
    Nano Lett; 2007 Jan; 7(1):108-15. PubMed ID: 17212448
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum simulation of multiple-exciton generation in a nanocrystal by a single photon.
    Witzel WM; Shabaev A; Hellberg CS; Jacobs VL; Efros AL
    Phys Rev Lett; 2010 Sep; 105(13):137401. PubMed ID: 21230809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The relationship between the coherent size, binding energy and dissociation dynamics of charge transfer excitons at organic interfaces.
    Kafle TR; Kattel B; Wang T; Chan WL
    J Phys Condens Matter; 2018 Nov; 30(45):454001. PubMed ID: 30265252
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New aspects of carrier multiplication in semiconductor nanocrystals.
    McGuire JA; Joo J; Pietryga JM; Schaller RD; Klimov VI
    Acc Chem Res; 2008 Dec; 41(12):1810-9. PubMed ID: 19006342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiple exciton generation in colloidal silicon nanocrystals.
    Beard MC; Knutsen KP; Yu P; Luther JM; Song Q; Metzger WK; Ellingson RJ; Nozik AJ
    Nano Lett; 2007 Aug; 7(8):2506-12. PubMed ID: 17645368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals.
    Klimov VI
    Annu Rev Phys Chem; 2007; 58():635-73. PubMed ID: 17163837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.