BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 17163761)

  • 1. Experimental tests of two proofreading mechanisms for 5'-splice site selection.
    Wang Y; Silverman SK
    ACS Chem Biol; 2006 Jun; 1(5):316-24. PubMed ID: 17163761
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of branchpoint-3' splice site spacing and interaction between intron terminal nucleotides in 3' splice site selection in Saccharomyces cerevisiae.
    Luukkonen BG; Séraphin B
    EMBO J; 1997 Feb; 16(4):779-92. PubMed ID: 9049307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unexpected metal ion requirements specific for catalysis of the branching reaction in a group II intron.
    Dème E; Nolte A; Jacquier A
    Biochemistry; 1999 Mar; 38(10):3157-67. PubMed ID: 10074371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural insights into group II intron catalysis and branch-site selection.
    Zhang L; Doudna JA
    Science; 2002 Mar; 295(5562):2084-8. PubMed ID: 11859154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA splicing: group I intron crystal structures reveal the basis of splice site selection and metal ion catalysis.
    Stahley MR; Strobel SA
    Curr Opin Struct Biol; 2006 Jun; 16(3):319-26. PubMed ID: 16697179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cotranscriptional recognition of human intronic box H/ACA snoRNAs occurs in a splicing-independent manner.
    Richard P; Kiss AM; Darzacq X; Kiss T
    Mol Cell Biol; 2006 Apr; 26(7):2540-9. PubMed ID: 16537900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RS domain-splicing signal interactions in splicing of U12-type and U2-type introns.
    Shen H; Green MR
    Nat Struct Mol Biol; 2007 Jul; 14(7):597-603. PubMed ID: 17603499
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A 6-bp deletion at the splice donor site of the first intron resulted in aberrant splicing using a cryptic splice site within exon 1 in a patient with succinyl-CoA: 3-Ketoacid CoA transferase (SCOT) deficiency.
    Fukao T; Sakurai S; Rolland MO; Zabot MT; Schulze A; Yamada K; Kondo N
    Mol Genet Metab; 2006 Nov; 89(3):280-2. PubMed ID: 16765626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Divalent metal ions promote the formation of the 5'-splice site recognition complex in a self-splicing group II intron.
    Kruschel D; Sigel RK
    J Inorg Biochem; 2008 Dec; 102(12):2147-54. PubMed ID: 18842303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of intron location on the splicing of BmKK2 in 293T cells.
    Zhijian C; Chao D; Dahe J; Wenxin L
    J Biochem Mol Toxicol; 2006; 20(3):127-32. PubMed ID: 16788950
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Splicing of scorpion toxin gene BmKK2 in HEK 293T cells.
    Zhijian C; Chao D; Shijin Y; Yingliang W; Jiqun S; Yonggang S; Wenxin L
    J Biochem Mol Toxicol; 2006; 20(1):1-6. PubMed ID: 16498639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of splice sites on the intron retention in histamine H3 receptors from rats and mice.
    Ding W; Lin L; Ren F; Zou H; Duan Z; Dai J
    J Genet Genomics; 2009 Aug; 36(8):475-82. PubMed ID: 19683670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mimicking the first step of RNA splicing: an artificial DNA enzyme can synthesize branched RNA using an oligonucleotide leaving group as a 5'-exon analogue.
    Coppins RL; Silverman SK
    Biochemistry; 2005 Oct; 44(41):13439-46. PubMed ID: 16216067
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple physical forms of excised group II intron RNAs in wheat mitochondria.
    Li-Pook-Than J; Bonen L
    Nucleic Acids Res; 2006; 34(9):2782-90. PubMed ID: 16717283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro splicing analysis showed that availability of a cryptic splice site is not a determinant for alternative splicing patterns caused by +1G-->A mutations in introns of the dystrophin gene.
    Habara Y; Takeshima Y; Awano H; Okizuka Y; Zhang Z; Saiki K; Yagi M; Matsuo M
    J Med Genet; 2009 Aug; 46(8):542-7. PubMed ID: 19001018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The receptor for branch-site docking within a group II intron active site.
    Hamill S; Pyle AM
    Mol Cell; 2006 Sep; 23(6):831-40. PubMed ID: 16973435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Twelve Group I introns in the same pre-rRNA transcript of the myxomycete Fuligo septica: RNA processing and evolution.
    Lundblad EW; Einvik C; Rønning S; Haugli K; Johansen S
    Mol Biol Evol; 2004 Jul; 21(7):1283-93. PubMed ID: 15034133
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trans insertion-splicing: ribozyme-catalyzed insertion of targeted sequences into RNAs.
    Johnson AK; Sinha J; Testa SM
    Biochemistry; 2005 Aug; 44(31):10702-10. PubMed ID: 16060679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural basis for the second step of group II intron splicing.
    Chan RT; Peters JK; Robart AR; Wiryaman T; Rajashankar KR; Toor N
    Nat Commun; 2018 Nov; 9(1):4676. PubMed ID: 30410046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Branch-point attack in group II introns is a highly reversible transesterification, providing a potential proofreading mechanism for 5'-splice site selection.
    Chin K; Pyle AM
    RNA; 1995 Jun; 1(4):391-406. PubMed ID: 7493317
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.