These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 17163966)

  • 81. The alcohol dehydrogenase gene: distribution among Sulfolobales and regulation in Sulfolobus solfataricus.
    Cannio R; Fiorentino G; Rossi M; Bartolucci S
    FEMS Microbiol Lett; 1999 Jan; 170(1):31-9. PubMed ID: 9919650
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Transcription-coupled global genomic repair in E. coli.
    Nudler E
    Trends Biochem Sci; 2023 Oct; 48(10):873-882. PubMed ID: 37558547
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Dynamic metabolic adjustments and genome plasticity are implicated in the heat shock response of the extremely thermoacidophilic archaeon Sulfolobus solfataricus.
    Tachdjian S; Kelly RM
    J Bacteriol; 2006 Jun; 188(12):4553-9. PubMed ID: 16740961
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Nucleotide excision repair in humans.
    Spivak G
    DNA Repair (Amst); 2015 Dec; 36():13-18. PubMed ID: 26388429
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Attack from both ends: mRNA degradation in the crenarchaeon Sulfolobus solfataricus.
    Evguenieva-Hackenberg E; Bläsi U
    Biochem Soc Trans; 2013 Feb; 41(1):379-83. PubMed ID: 23356315
    [TBL] [Abstract][Full Text] [Related]  

  • 86. UvrD helicase: an old dog with a new trick: how one step backward leads to many steps forward.
    Epshtein V
    Bioessays; 2015 Jan; 37(1):12-9. PubMed ID: 25345862
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Molecular Mechanisms of Transcription-Coupled Repair.
    Selby CP; Lindsey-Boltz LA; Li W; Sancar A
    Annu Rev Biochem; 2023 Jun; 92():115-144. PubMed ID: 37001137
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Optimization of an In Vitro Transcription/Translation System Based on
    Lo Gullo G; Mattossovich R; Perugino G; La Teana A; Londei P; Benelli D
    Archaea; 2019; 2019():9848253. PubMed ID: 30886540
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Transcriptomic analysis of the SSV2 infection of Sulfolobus solfataricus with and without the integrative plasmid pSSVi.
    Ren Y; She Q; Huang L
    Virology; 2013 Jul; 441(2):126-34. PubMed ID: 23579037
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Response of the hyperthermophilic archaeon Sulfolobus solfataricus to UV damage.
    Fröls S; Gordon PM; Panlilio MA; Duggin IG; Bell SD; Sensen CW; Schleper C
    J Bacteriol; 2007 Dec; 189(23):8708-18. PubMed ID: 17905990
    [TBL] [Abstract][Full Text] [Related]  

  • 91. The Missing Electrostatic Interactions Between DNA Substrate and Sulfolobus solfataricus DNA Photolyase: What is the Role of Charged Amino Acids in Thermophilic DNA Binding Proteins?
    Gindt YM; Edani BH; Olejnikova A; Roberts AN; Munshi S; Stanley RJ
    J Phys Chem B; 2016 Oct; 120(39):10234-10242. PubMed ID: 27626127
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Functional curation of the Sulfolobus solfataricus P2 and S. acidocaldarius 98-3 complete genome sequences.
    Esser D; Kouril T; Zaparty M; Sierocinski P; Chan PP; Lowe T; Van der Oost J; Albers SV; Schomburg D; Makarova KS; Siebers B
    Extremophiles; 2011 Nov; 15(6):711-2. PubMed ID: 21912952
    [TBL] [Abstract][Full Text] [Related]  

  • 93. UV-inducible DNA exchange in hyperthermophilic archaea mediated by type IV pili.
    Ajon M; Fröls S; van Wolferen M; Stoecker K; Teichmann D; Driessen AJ; Grogan DW; Albers SV; Schleper C
    Mol Microbiol; 2011 Nov; 82(4):807-17. PubMed ID: 21999488
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Swapping genes to survive - a new role for archaeal type IV pili.
    Allers T
    Mol Microbiol; 2011 Nov; 82(4):789-91. PubMed ID: 21992544
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Sulfolobus mutants, generated via PCR products, which lack putative enzymes of UV photoproduct repair.
    Sakofsky CJ; Runck LA; Grogan DW
    Archaea; 2011; 2011():864015. PubMed ID: 21785574
    [TBL] [Abstract][Full Text] [Related]  

  • 96. DNA repair in terminally differentiated cells.
    Nouspikel T; Hanawalt PC
    DNA Repair (Amst); 2002 Jan; 1(1):59-75. PubMed ID: 12509297
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Electrochemical approach to the repair of oxetanes mimicking DNA (6-4) photoproducts.
    Boussicault F; Robert M
    J Phys Chem B; 2006 Nov; 110(43):21987-93. PubMed ID: 17064168
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Transcription-coupled DNA repair: two decades of progress and surprises.
    Hanawalt PC; Spivak G
    Nat Rev Mol Cell Biol; 2008 Dec; 9(12):958-70. PubMed ID: 19023283
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The Transcription-Repair Coupling Factor Mfd Prevents and Promotes Mutagenesis in a Context-Dependent Manner.
    Lindsey-Boltz LA; Sancar A
    Front Mol Biosci; 2021; 8():668290. PubMed ID: 34095223
    [TBL] [Abstract][Full Text] [Related]  

  • 100. T(lys), a newly identified Sulfolobus spindle-shaped virus 1 transcript expressed in the lysogenic state, encodes a DNA-binding protein interacting at the promoters of the early genes.
    Fusco S; She Q; Bartolucci S; Contursi P
    J Virol; 2013 May; 87(10):5926-36. PubMed ID: 23514883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.