These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 17163966)
101. Nucleotide excision repair in the third kingdom. Ogrünç M; Becker DF; Ragsdale SW; Sancar A J Bacteriol; 1998 Nov; 180(21):5796-8. PubMed ID: 9791138 [TBL] [Abstract][Full Text] [Related]
102. Strategies and Methods of Transcription-Coupled Repair Studies In Vitro and In Vivo. Epshtein V; Kamarthapu V; Nudler E Methods Enzymol; 2017; 591():287-306. PubMed ID: 28645373 [TBL] [Abstract][Full Text] [Related]
103. Every OGT Is Illuminated … by Fluorescent and Synchrotron Lights. Miggiano R; Valenti A; Rossi F; Rizzi M; Perugino G; Ciaramella M Int J Mol Sci; 2017 Dec; 18(12):. PubMed ID: 29206193 [No Abstract] [Full Text] [Related]
104. Prioritizing the repair of DNA damage that is encountered by RNA polymerase. Savery N Transcription; 2011 Jul; 2(4):168-172. PubMed ID: 21922058 [TBL] [Abstract][Full Text] [Related]
105. Form and function of archaeal genomes. Bell SD Biochem Soc Trans; 2022 Dec; 50(6):1931-1939. PubMed ID: 36511238 [TBL] [Abstract][Full Text] [Related]
107. RNA polymerase pausing, stalling and bypass during transcription of damaged DNA: from molecular basis to functional consequences. Agapov A; Olina A; Kulbachinskiy A Nucleic Acids Res; 2022 Apr; 50(6):3018-3041. PubMed ID: 35323981 [TBL] [Abstract][Full Text] [Related]
108. DNA Polymerase B1 Binding Protein 1 Is Important for DNA Repair by Holoenzyme PolB1 in the Extremely Thermophilic Crenarchaeon Miyabayashi H; Sakai HD; Kurosawa N Microorganisms; 2021 Feb; 9(2):. PubMed ID: 33672533 [TBL] [Abstract][Full Text] [Related]
109. PolB1 Is Sufficient for DNA Replication and Repair Under Normal Growth Conditions in the Extremely Thermophilic Crenarchaeon Miyabayashi H; Jain R; Suzuki S; Grogan DW; Kurosawa N Front Microbiol; 2020; 11():613375. PubMed ID: 33424816 [TBL] [Abstract][Full Text] [Related]
110. Pérez-Arnaiz P; Dattani A; Smith V; Allers T Open Biol; 2020 Dec; 10(12):200293. PubMed ID: 33259746 [TBL] [Abstract][Full Text] [Related]
112. Single-molecule live-cell imaging visualizes parallel pathways of prokaryotic nucleotide excision repair. Ghodke H; Ho HN; van Oijen AM Nat Commun; 2020 Mar; 11(1):1477. PubMed ID: 32198385 [TBL] [Abstract][Full Text] [Related]
113. Single-molecule imaging reveals molecular coupling between transcription and DNA repair machinery in live cells. Ho HN; van Oijen AM; Ghodke H Nat Commun; 2020 Mar; 11(1):1478. PubMed ID: 32198374 [TBL] [Abstract][Full Text] [Related]
114. DNA Repair and Photoprotection: Mechanisms of Overcoming Environmental Ultraviolet Radiation Exposure in Halophilic Archaea. Jones DL; Baxter BK Front Microbiol; 2017; 8():1882. PubMed ID: 29033920 [TBL] [Abstract][Full Text] [Related]
115. From Mfd to TRCF and Back Again-A Perspective on Bacterial Transcription-coupled Nucleotide Excision Repair. Deaconescu AM; Suhanovsky MM Photochem Photobiol; 2017 Jan; 93(1):268-279. PubMed ID: 27859304 [TBL] [Abstract][Full Text] [Related]
116. Structure of transcribed chromatin is a sensor of DNA damage. Pestov NA; Gerasimova NS; Kulaeva OI; Studitsky VM Sci Adv; 2015 Jul; 1(6):e1500021. PubMed ID: 26601207 [TBL] [Abstract][Full Text] [Related]
117. Understanding DNA Repair in Hyperthermophilic Archaea: Persistent Gaps and Other Reasons to Focus on the Fork. Grogan DW Archaea; 2015; 2015():942605. PubMed ID: 26146487 [TBL] [Abstract][Full Text] [Related]
119. Interplay of DNA repair with transcription: from structures to mechanisms. Deaconescu AM; Artsimovitch I; Grigorieff N Trends Biochem Sci; 2012 Dec; 37(12):543-52. PubMed ID: 23084398 [TBL] [Abstract][Full Text] [Related]