These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 17164032)

  • 1. Ion channels and calcium signaling in cerebral arteries following subarachnoid hemorrhage.
    Wellman GC
    Neurol Res; 2006 Oct; 28(7):690-702. PubMed ID: 17164032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergence of a R-type Ca2+ channel (CaV 2.3) contributes to cerebral artery constriction after subarachnoid hemorrhage.
    Ishiguro M; Wellman TL; Honda A; Russell SR; Tranmer BI; Wellman GC
    Circ Res; 2005 Mar; 96(4):419-26. PubMed ID: 15692089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preserved BK channel function in vasospastic myocytes from a dog model of subarachnoid hemorrhage.
    Jahromi BS; Aihara Y; Ai J; Zhang ZD; Weyer G; Nikitina E; Yassari R; Houamed KM; Macdonald RL
    J Vasc Res; 2008; 45(5):402-15. PubMed ID: 18401179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxyhemoglobin-induced suppression of voltage-dependent K+ channels in cerebral arteries by enhanced tyrosine kinase activity.
    Ishiguro M; Morielli AD; Zvarova K; Tranmer BI; Penar PL; Wellman GC
    Circ Res; 2006 Nov; 99(11):1252-60. PubMed ID: 17068294
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potassium-channel openers KMUP-1 and pinacidil prevent subarachnoid hemorrhage-induced vasospasm by restoring the BKCa-channel activity.
    Chen JY; Cheng KI; Tsai YL; Hong YR; Howng SL; Kwan AL; Chen IJ; Wu BN
    Shock; 2012 Aug; 38(2):203-12. PubMed ID: 22576001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vascular KCNQ (Kv7) potassium channels as common signaling intermediates and therapeutic targets in cerebral vasospasm.
    Mani BK; O'Dowd J; Kumar L; Brueggemann LI; Ross M; Byron KL
    J Cardiovasc Pharmacol; 2013 Jan; 61(1):51-62. PubMed ID: 23107868
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in arterial myocyte excitability induced by subarachnoid hemorrhage in a rat model.
    Revilla-González G; Ureña J; González-Montelongo MDC; Castellano A
    Vascul Pharmacol; 2024 Jun; 155():107287. PubMed ID: 38408532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expression and function of inwardly rectifying potassium channels after experimental subarachnoid hemorrhage.
    Weyer GW; Jahromi BS; Aihara Y; Agbaje-Williams M; Nikitina E; Zhang ZD; Macdonald RL
    J Cereb Blood Flow Metab; 2006 Mar; 26(3):382-91. PubMed ID: 16079788
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of subarachnoid hemorrhage on local and global calcium signaling in cerebral artery myocytes.
    Koide M; Nystoriak MA; Brayden JE; Wellman GC
    Acta Neurochir Suppl; 2011; 110(Pt 1):145-50. PubMed ID: 21116930
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence that 20-HETE contributes to the development of acute and delayed cerebral vasospasm.
    Roman RJ; Renic M; Dunn KM; Takeuchi K; Hacein-Bey L
    Neurol Res; 2006 Oct; 28(7):738-49. PubMed ID: 17164037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alteration in voltage-dependent calcium channels in dog basilar artery after subarachnoid hemorrhage. Laboratory investigation.
    Nikitina E; Kawashima A; Takahashi M; Zhang ZD; Shang X; Ai J; Macdonald RL
    J Neurosurg; 2010 Oct; 113(4):870-80. PubMed ID: 20225918
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular mechanisms of cerebral vasospasm following aneurysmal SAH.
    Rothoerl RD; Ringel F
    Neurol Res; 2007 Oct; 29(7):636-42. PubMed ID: 18173899
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of Ca++ sparks by oxyhemoglobin in rabbit cerebral arteries.
    Jewell RP; Saundry CM; Bonev AD; Tranmer BI; Wellman GC
    J Neurosurg; 2004 Feb; 100(2):295-302. PubMed ID: 15086238
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced Ca2+ spark activity after subarachnoid hemorrhage disables BK channel control of cerebral artery tone.
    Koide M; Nystoriak MA; Krishnamoorthy G; O'Connor KP; Bonev AD; Nelson MT; Wellman GC
    J Cereb Blood Flow Metab; 2011 Jan; 31(1):3-16. PubMed ID: 20736958
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of raloxifene on cerebral vasospasm after experimental Subarachnoid Hemorrhage in rabbits.
    Gürses L; Seçkin H; Simşek S; Senel OO; Yigitkanli K; Oztürk E; Beşalti O; Belen D; Bavbek M
    Surg Neurol; 2009 Nov; 72(5):490-4; discussion 494-5. PubMed ID: 19147193
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contribution of the remodeling response to cerebral vasospasm.
    Zhang ZD; Macdonald RL
    Neurol Res; 2006 Oct; 28(7):713-20. PubMed ID: 17164034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fundamental increase in pressure-dependent constriction of brain parenchymal arterioles from subarachnoid hemorrhage model rats due to membrane depolarization.
    Nystoriak MA; O'Connor KP; Sonkusare SK; Brayden JE; Nelson MT; Wellman GC
    Am J Physiol Heart Circ Physiol; 2011 Mar; 300(3):H803-12. PubMed ID: 21148767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subarachnoid haemorrhage: what happens to the cerebral arteries?
    Sobey CG; Faraci FM
    Clin Exp Pharmacol Physiol; 1998 Nov; 25(11):867-76. PubMed ID: 9807657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxyhemoglobin-induced expression of R-type Ca2+ channels in cerebral arteries.
    Link TE; Murakami K; Beem-Miller M; Tranmer BI; Wellman GC
    Stroke; 2008 Jul; 39(7):2122-8. PubMed ID: 18436877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential contribution of SOCC to cerebral vasospasm after experimental subarachnoid hemorrhage in rats.
    Song JN; Yan WT; An JY; Hao GS; Guo XY; Zhang M; Li Y; Li DD; Sun P
    Brain Res; 2013 Jun; 1517():93-103. PubMed ID: 23542055
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.