BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 17164141)

  • 1. 15-lipoxygenase 2 (15-LOX2) is a functional tumor suppressor that regulates human prostate epithelial cell differentiation, senescence, and growth (size).
    Tang DG; Bhatia B; Tang S; Schneider-Broussard R
    Prostaglandins Other Lipid Mediat; 2007 Jan; 82(1-4):135-46. PubMed ID: 17164141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence that Sp1 positively and Sp3 negatively regulate and androgen does not directly regulate functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) gene expression in normal human prostate epithelial cells.
    Tang S; Bhatia B; Zhou J; Maldonado CJ; Chandra D; Kim E; Fischer SM; Butler AP; Friedman SL; Tang DG
    Oncogene; 2004 Sep; 23(41):6942-53. PubMed ID: 15247906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cell-autonomous induction of functional tumor suppressor 15-lipoxygenase 2 (15-LOX2) contributes to replicative senescence of human prostate progenitor cells.
    Bhatia B; Tang S; Yang P; Doll A; Aumüeller G; Newman RA; Tang DG
    Oncogene; 2005 May; 24(22):3583-95. PubMed ID: 15750631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evidence that arachidonate 15-lipoxygenase 2 is a negative cell cycle regulator in normal prostate epithelial cells.
    Tang S; Bhatia B; Maldonado CJ; Yang P; Newman RA; Liu J; Chandra D; Traag J; Klein RD; Fischer SM; Chopra D; Shen J; Zhau HE; Chung LW; Tang DG
    J Biol Chem; 2002 May; 277(18):16189-201. PubMed ID: 11839751
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA methylation paradigm shift: 15-lipoxygenase-1 upregulation in prostatic intraepithelial neoplasia and prostate cancer by atypical promoter hypermethylation.
    Kelavkar UP; Harya NS; Hutzley J; Bacich DJ; Monzon FA; Chandran U; Dhir R; O'Keefe DS
    Prostaglandins Other Lipid Mediat; 2007 Jan; 82(1-4):185-97. PubMed ID: 17164146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct effects of annexin A7 and p53 on arachidonate lipoxygenation in prostate cancer cells involve 5-lipoxygenase transcription.
    Torosyan Y; Dobi A; Naga S; Mezhevaya K; Glasman M; Norris C; Jiang G; Mueller G; Pollard H; Srivastava M
    Cancer Res; 2006 Oct; 66(19):9609-16. PubMed ID: 17018618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor-suppressive functions of 15-Lipoxygenase-2 and RB1CC1 in prostate cancer.
    Suraneni MV; Moore JR; Zhang D; Badeaux M; Macaluso MD; DiGiovanni J; Kusewitt D; Tang DG
    Cell Cycle; 2014; 13(11):1798-810. PubMed ID: 24732589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SOX9 is expressed in normal prostate basal cells and regulates androgen receptor expression in prostate cancer cells.
    Wang H; McKnight NC; Zhang T; Lu ML; Balk SP; Yuan X
    Cancer Res; 2007 Jan; 67(2):528-36. PubMed ID: 17234760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function.
    Bidaux G; Flourakis M; Thebault S; Zholos A; Beck B; Gkika D; Roudbaraki M; Bonnal JL; Mauroy B; Shuba Y; Skryma R; Prevarskaya N
    J Clin Invest; 2007 Jun; 117(6):1647-57. PubMed ID: 17510704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transgenic expression of 15-lipoxygenase 2 (15-LOX2) in mouse prostate leads to hyperplasia and cell senescence.
    Suraneni MV; Schneider-Broussard R; Moore JR; Davis TC; Maldonado CJ; Li H; Newman RA; Kusewitt D; Hu J; Yang P; Tang DG
    Oncogene; 2010 Jul; 29(30):4261-75. PubMed ID: 20514017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melatonin as a negative mitogenic hormonal regulator of human prostate epithelial cell growth: potential mechanisms and clinical significance.
    Tam CW; Chan KW; Liu VW; Pang B; Yao KM; Shiu SY
    J Pineal Res; 2008 Nov; 45(4):403-12. PubMed ID: 18637986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subcellular localization and tumor-suppressive functions of 15-lipoxygenase 2 (15-LOX2) and its splice variants.
    Bhatia B; Maldonado CJ; Tang S; Chandra D; Klein RD; Chopra D; Shappell SB; Yang P; Newman RA; Tang DG
    J Biol Chem; 2003 Jul; 278(27):25091-100. PubMed ID: 12704195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological transition of proliferative inflammatory atrophy to high-grade intraepithelial neoplasia and cancer in human prostate.
    Wang W; Bergh A; Damber JE
    Prostate; 2009 Sep; 69(13):1378-86. PubMed ID: 19507201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential expression of CD44 during human prostate epithelial cell differentiation.
    Alam TN; O'Hare MJ; Laczkó I; Freeman A; Al-Beidh F; Masters JR; Hudson DL
    J Histochem Cytochem; 2004 Aug; 52(8):1083-90. PubMed ID: 15258184
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Focal degeneration of basal cells and the resultant auto-immunoreactions: a novel mechanism for prostate tumor progression and invasion.
    Man YG; Gardner WA
    Med Hypotheses; 2008; 70(2):387-408. PubMed ID: 17658698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression of survivin and its spliced isoforms associated with proliferation and aggressive phenotypes of prostate cancer.
    Koike H; Sekine Y; Kamiya M; Nakazato H; Suzuki K
    Urology; 2008 Dec; 72(6):1229-33. PubMed ID: 18336887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wwox suppresses prostate cancer cell growth through modulation of ErbB2-mediated androgen receptor signaling.
    Qin HR; Iliopoulos D; Nakamura T; Costinean S; Volinia S; Druck T; Sun J; Okumura H; Huebner K
    Mol Cancer Res; 2007 Sep; 5(9):957-65. PubMed ID: 17704139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Signal transducer and activator of transcription-6 (STAT6) is a constitutively expressed survival factor in human prostate cancer.
    Das S; Roth CP; Wasson LM; Vishwanatha JK
    Prostate; 2007 Oct; 67(14):1550-64. PubMed ID: 17705178
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Increased prostate cell proliferation and loss of cell differentiation in mice lacking prostate epithelial androgen receptor.
    Wu CT; Altuwaijri S; Ricke WA; Huang SP; Yeh S; Zhang C; Niu Y; Tsai MY; Chang C
    Proc Natl Acad Sci U S A; 2007 Jul; 104(31):12679-84. PubMed ID: 17652515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stromal-epithelial cell interactions and androgen receptor-coregulator recruitment is altered in the tissue microenvironment of prostate cancer.
    Cano P; Godoy A; Escamilla R; Dhir R; Onate SA
    Cancer Res; 2007 Jan; 67(2):511-9. PubMed ID: 17234758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.