BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 17164243)

  • 1. The rate of c-fos transcription in vivo is continuously regulated at the level of elongation by dynamic stimulus-coupled recruitment of positive transcription elongation factor b.
    Ryser S; Fujita T; Tortola S; Piuz I; Schlegel W
    J Biol Chem; 2007 Feb; 282(7):5075-5084. PubMed ID: 17164243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Up-regulation of P-TEFb by the MEK1-extracellular signal-regulated kinase signaling pathway contributes to stimulated transcription elongation of immediate early genes in neuroendocrine cells.
    Fujita T; Ryser S; Piuz I; Schlegel W
    Mol Cell Biol; 2008 Mar; 28(5):1630-43. PubMed ID: 18086894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Essential contribution of intron sequences to Ca(2+)-dependent activation of c-fos transcription in pituitary cells.
    van Haasteren G; Li S; Ryser S; Schlegel W
    Neuroendocrinology; 2000 Dec; 72(6):368-78. PubMed ID: 11146420
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program.
    Gomes NP; Bjerke G; Llorente B; Szostek SA; Emerson BM; Espinosa JM
    Genes Dev; 2006 Mar; 20(5):601-12. PubMed ID: 16510875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Negative elongation factor NELF controls transcription of immediate early genes in a stimulus-specific manner.
    Fujita T; Piuz I; Schlegel W
    Exp Cell Res; 2009 Jan; 315(2):274-84. PubMed ID: 19014935
    [TBL] [Abstract][Full Text] [Related]  

  • 6. c-fos mRNA and FOS protein expression is induced by Ca2+ influx in GH3B6 pituitary cells.
    Li SL; Cougnon N; Bresson-Bépoldin L; Zhao SJ; Schlegel W
    J Mol Endocrinol; 1996 Jun; 16(3):229-38. PubMed ID: 8782081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic bookmarking of primary response genes by p300 and RNA polymerase II complexes.
    Byun JS; Wong MM; Cui W; Idelman G; Li Q; De Siervi A; Bilke S; Haggerty CM; Player A; Wang YH; Thirman MJ; Kaberlein JJ; Petrovas C; Koup RA; Longo D; Ozato K; Gardner K
    Proc Natl Acad Sci U S A; 2009 Nov; 106(46):19286-91. PubMed ID: 19880750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism of action of RNA polymerase II elongation factor Elongin. Maximal stimulation of elongation requires conversion of the early elongation complex to an Elongin-activable form.
    Moreland RJ; Hanas JS; Conaway JW; Conaway RC
    J Biol Chem; 1998 Oct; 273(41):26610-7. PubMed ID: 9756900
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CTR9, a component of PAF complex, controls elongation block at the c-Fos locus via signal-dependent regulation of chromatin-bound NELF dissociation.
    Yoo HS; Seo JH; Yoo JY
    PLoS One; 2013; 8(4):e61055. PubMed ID: 23593388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein kinase inhibitor H7 blocks the induction of immediate-early genes zif268 and c-fos by a mechanism unrelated to inhibition of protein kinase C but possibly related to inhibition of phosphorylation of RNA polymerase II.
    Kumahara E; Ebihara T; Saffen D
    J Biol Chem; 1999 Apr; 274(15):10430-8. PubMed ID: 10187833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Recycling of the general transcription factors during RNA polymerase II transcription.
    Zawel L; Kumar KP; Reinberg D
    Genes Dev; 1995 Jun; 9(12):1479-90. PubMed ID: 7601352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of elongation factors TFIIS and elongin A with a human RNA polymerase II holoenzyme capable of promoter-specific initiation and responsive to transcriptional activators.
    Pan G; Aso T; Greenblatt J
    J Biol Chem; 1997 Sep; 272(39):24563-71. PubMed ID: 9305922
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The RNA binding complexes NF45-NF90 and NF45-NF110 associate dynamically with the c-fos gene and function as transcriptional coactivators.
    Nakadai T; Fukuda A; Shimada M; Nishimura K; Hisatake K
    J Biol Chem; 2015 Oct; 290(44):26832-45. PubMed ID: 26381409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential regulation of NF-kappaB by elongation factors is determined by core promoter type.
    Amir-Zilberstein L; Ainbinder E; Toube L; Yamaguchi Y; Handa H; Dikstein R
    Mol Cell Biol; 2007 Jul; 27(14):5246-59. PubMed ID: 17502349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A functional NF-kappaB enhancer element in the first intron contributes to the control of c-fos transcription.
    Charital YM; van Haasteren G; Massiha A; Schlegel W; Fujita T
    Gene; 2009 Feb; 430(1-2):116-22. PubMed ID: 19026727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The RNA polymerase II general elongation factors.
    Reines D; Conaway JW; Conaway RC
    Trends Biochem Sci; 1996 Sep; 21(9):351-5. PubMed ID: 8870500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The RNA polymerase II elongation complex.
    Aso T; Conaway JW; Conaway RC
    FASEB J; 1995 Nov; 9(14):1419-28. PubMed ID: 7589983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TATA-binding protein-associated factors enhance the recruitment of RNA polymerase II by transcriptional activators.
    Wu SY; Chiang CM
    J Biol Chem; 2001 Sep; 276(36):34235-43. PubMed ID: 11457828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure and function of RNA polymerase II elongation factor ELL. Identification of two overlapping ELL functional domains that govern its interaction with polymerase and the ternary elongation complex.
    Shilatifard A; Haque D; Conaway RC; Conaway JW
    J Biol Chem; 1997 Aug; 272(35):22355-63. PubMed ID: 9268387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Promoter-proximal pausing of RNA polymerase II: an opportunity to regulate gene transcription.
    Fujita T; Schlegel W
    J Recept Signal Transduct Res; 2010 Feb; 30(1):31-42. PubMed ID: 20170405
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.