These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 17164330)
21. Warfarin resistance is associated with a protein component of the vitamin K 2,3-epoxide reductase enzyme complex in rat liver. Cain D; Hutson SM; Wallin R Thromb Haemost; 1998 Jul; 80(1):128-33. PubMed ID: 9684798 [TBL] [Abstract][Full Text] [Related]
22. Warfarin inhibition of vitamin K 2,3-epoxide reductase in rat liver microsomes. Fasco MJ; Principe LM; Walsh WA; Friedman PA Biochemistry; 1983 Nov; 22(24):5655-60. PubMed ID: 6652076 [TBL] [Abstract][Full Text] [Related]
23. Warfarin and vitamin K epoxide reductase: a molecular accounting for observed inhibition. Wu S; Chen X; Jin DY; Stafford DW; Pedersen LG; Tie JK Blood; 2018 Aug; 132(6):647-657. PubMed ID: 29743176 [TBL] [Abstract][Full Text] [Related]
24. Vitamin K epoxide reductase activity and its inhibition by warfarin in young and old rats. Hallak HO; Wedlund PJ Drug Metab Dispos; 1991; 19(1):278-9. PubMed ID: 1673414 [No Abstract] [Full Text] [Related]
25. Tissue distribution and warfarin sensitivity of vitamin K epoxide reductase. Hazelett SE; Preusch PC Biochem Pharmacol; 1988 Mar; 37(5):929-34. PubMed ID: 3345202 [TBL] [Abstract][Full Text] [Related]
26. The inhibitory effect of calumenin on the vitamin K-dependent gamma-carboxylation system. Characterization of the system in normal and warfarin-resistant rats. Wajih N; Sane DC; Hutson SM; Wallin R J Biol Chem; 2004 Jun; 279(24):25276-83. PubMed ID: 15075329 [TBL] [Abstract][Full Text] [Related]
27. Warfarin and vitamin K compete for binding to Phe55 in human VKOR. Czogalla KJ; Biswas A; Höning K; Hornung V; Liphardt K; Watzka M; Oldenburg J Nat Struct Mol Biol; 2017 Jan; 24(1):77-85. PubMed ID: 27941861 [TBL] [Abstract][Full Text] [Related]
28. Effect of warfarin on plasma and liver vitamin K levels and vitamin K epoxide reductase activity in relation to plasma clotting factor levels in rats. Yamanaka Y; Yamano M; Yasunaga K; Shike T; Uchida K Thromb Res; 1990 Jan; 57(2):205-14. PubMed ID: 2315885 [TBL] [Abstract][Full Text] [Related]
29. Temporal variation in the effects of warfarin on the vitamin K cycle. Soulban G; Labrecque G; Bélanger PM Chronobiol Int; 1990; 7(5-6):403-11. PubMed ID: 2097073 [TBL] [Abstract][Full Text] [Related]
30. Identification of a warfarin-sensitive protein component in a 200S rat liver microsomal fraction catalyzing vitamin K and vitamin K 2,3-epoxide reduction. Lee JJ; Principe LM; Fasco MJ Biochemistry; 1985 Dec; 24(25):7063-70. PubMed ID: 4084561 [TBL] [Abstract][Full Text] [Related]
31. A novel mutation in VKORC1 and its effect on enzymatic activity in Japanese warfarin-resistant rats. Tanaka KD; Kawai YK; Ikenaka Y; Harunari T; Tanikawa T; Fujita S; Ishizuka M J Vet Med Sci; 2013 Feb; 75(2):135-9. PubMed ID: 23018795 [TBL] [Abstract][Full Text] [Related]
32. Co-purification of microsomal epoxide hydrolase with the warfarin-sensitive vitamin K1 oxide reductase of the vitamin K cycle. Guenthner TM; Cai D; Wallin R Biochem Pharmacol; 1998 Jan; 55(2):169-75. PubMed ID: 9448739 [TBL] [Abstract][Full Text] [Related]
33. The function and metabolism of vitamin K. Olson RE Annu Rev Nutr; 1984; 4():281-337. PubMed ID: 6380538 [TBL] [Abstract][Full Text] [Related]
34. Vitamin K epoxide reductase complex subunit 1 (VKORC1): the key protein of the vitamin K cycle. Oldenburg J; Bevans CG; Müller CR; Watzka M Antioxid Redox Signal; 2006; 8(3-4):347-53. PubMed ID: 16677080 [TBL] [Abstract][Full Text] [Related]
35. Is thioredoxin the physiological vitamin K epoxide reducing agent? Preusch PC FEBS Lett; 1992 Jul; 305(3):257-9. PubMed ID: 1299627 [TBL] [Abstract][Full Text] [Related]
36. Engineering of a recombinant vitamin K-dependent gamma-carboxylation system with enhanced gamma-carboxyglutamic acid forming capacity: evidence for a functional CXXC redox center in the system. Wajih N; Sane DC; Hutson SM; Wallin R J Biol Chem; 2005 Mar; 280(11):10540-7. PubMed ID: 15640149 [TBL] [Abstract][Full Text] [Related]
37. A molecular mechanism for genetic warfarin resistance in the rat. Wallin R; Hutson SM; Cain D; Sweatt A; Sane DC FASEB J; 2001 Nov; 15(13):2542-4. PubMed ID: 11641264 [TBL] [Abstract][Full Text] [Related]
38. Evaluation of warfarin resistance using transcription activator-like effector nucleases-mediated vitamin K epoxide reductase knockout HEK293 cells. Tie JK; Jin DY; Tie K; Stafford DW J Thromb Haemost; 2013 Aug; 11(8):1556-64. PubMed ID: 23710884 [TBL] [Abstract][Full Text] [Related]
39. Characterization of Warfarin Inhibition Kinetics Requires Stabilization of Intramembrane Vitamin K Epoxide Reductases. Li S; Liu S; Yang Y; Li W J Mol Biol; 2020 Aug; 432(18):5197-5208. PubMed ID: 32445640 [TBL] [Abstract][Full Text] [Related]
40. Determination of the warfarin inhibition constant Ki for vitamin K 2,3-epoxide reductase complex subunit-1 (VKORC1) using an in vitro DTT-driven assay. Bevans CG; Krettler C; Reinhart C; Tran H; Koßmann K; Watzka M; Oldenburg J Biochim Biophys Acta; 2013 Aug; 1830(8):4202-10. PubMed ID: 23618698 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]