These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 17164403)

  • 1. Integrated proteomics and genomics strategies bring new insight into Candida albicans response upon macrophage interaction.
    Fernández-Arenas E; Cabezón V; Bermejo C; Arroyo J; Nombela C; Diez-Orejas R; Gil C
    Mol Cell Proteomics; 2007 Mar; 6(3):460-78. PubMed ID: 17164403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiple Alternative Carbon Pathways Combine To Promote Candida albicans Stress Resistance, Immune Interactions, and Virulence.
    Williams RB; Lorenz MC
    mBio; 2020 Jan; 11(1):. PubMed ID: 31937647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Candida albicans-macrophage interactions: genomic and proteomic insights.
    Diez-Orejas R; Fernández-Arenas E
    Future Microbiol; 2008 Dec; 3(6):661-81. PubMed ID: 19072183
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Candida albicans induces pro-inflammatory and anti-apoptotic signals in macrophages as revealed by quantitative proteomics and phosphoproteomics.
    Reales-Calderón JA; Sylvester M; Strijbis K; Jensen ON; Nombela C; Molero G; Gil C
    J Proteomics; 2013 Oct; 91():106-35. PubMed ID: 23832136
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions of Both Pathogenic and Nonpathogenic CUG Clade
    Pountain AW; Collette JR; Farrell WM; Lorenz MC
    mBio; 2021 Dec; 12(6):e0331721. PubMed ID: 34903044
    [No Abstract]   [Full Text] [Related]  

  • 6. Transcriptional response of Candida albicans upon internalization by macrophages.
    Lorenz MC; Bender JA; Fink GR
    Eukaryot Cell; 2004 Oct; 3(5):1076-87. PubMed ID: 15470236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Candida albicans isolates with different genomic backgrounds display a differential response to macrophage infection.
    Tavanti A; Campa D; Bertozzi A; Pardini G; Naglik JR; Barale R; Senesi S
    Microbes Infect; 2006 Mar; 8(3):791-800. PubMed ID: 16473540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serial Systemic
    Arita GS; Meneguello JE; Sakita KM; Faria DR; Pilau EJ; Ghiraldi-Lopes LD; Campanerut-Sá PAZ; Kioshima ÉS; Bonfim-Mendonça PS; Svidzinski TIE
    Front Cell Infect Microbiol; 2019; 9():230. PubMed ID: 31293987
    [No Abstract]   [Full Text] [Related]  

  • 9. Carbon metabolism snapshot by ddPCR during the early step of Candida albicans phagocytosis by macrophages.
    Laurian R; Jacot-des-Combes C; Bastian F; Dementhon K; Cotton P
    Pathog Dis; 2020 Feb; 78(1):. PubMed ID: 32129841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sub-proteomic study on macrophage response to Candida albicans unravels new proteins involved in the host defense against the fungus.
    Reales-Calderón JA; Martínez-Solano L; Martínez-Gomariz M; Nombela C; Molero G; Gil C
    J Proteomics; 2012 Aug; 75(15):4734-46. PubMed ID: 22342486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Throughput Screening Identifies Genes Required for
    O'Meara TR; Duah K; Guo CX; Maxson ME; Gaudet RG; Koselny K; Wellington M; Powers ME; MacAlpine J; O'Meara MJ; Veri AO; Grinstein S; Noble SM; Krysan D; Gray-Owen SD; Cowen LE
    mBio; 2018 Aug; 9(4):. PubMed ID: 30131363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidation of potentially virulent factors of Candida albicans during serum adaptation by using quantitative time-course proteomics.
    Aoki W; Tatsukami Y; Kitahara N; Matsui K; Morisaka H; Kuroda K; Ueda M
    J Proteomics; 2013 Oct; 91():417-29. PubMed ID: 23948566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in alternative carbon utilization pathways in Candida albicans attenuate virulence and confer pleiotropic phenotypes.
    Ramírez MA; Lorenz MC
    Eukaryot Cell; 2007 Feb; 6(2):280-90. PubMed ID: 17158734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteomics on its way to study host-pathogen interaction in Candida albicans.
    Rupp S
    Curr Opin Microbiol; 2004 Aug; 7(4):330-5. PubMed ID: 15358251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential regulation of the transcriptional repressor NRG1 accounts for altered host-cell interactions in Candida albicans and Candida dubliniensis.
    Moran GP; MacCallum DM; Spiering MJ; Coleman DC; Sullivan DJ
    Mol Microbiol; 2007 Nov; 66(4):915-29. PubMed ID: 17927699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The glyoxylate cycle is required for fungal virulence.
    Lorenz MC; Fink GR
    Nature; 2001 Jul; 412(6842):83-6. PubMed ID: 11452311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Candida albicans CUG mistranslation is a mechanism to create cell surface variation.
    Miranda I; Silva-Dias A; Rocha R; Teixeira-Santos R; Coelho C; Gonçalves T; Santos MA; Pina-Vaz C; Solis NV; Filler SG; Rodrigues AG
    mBio; 2013 Aug; 4(4):. PubMed ID: 23800396
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proteomic characterization of human proinflammatory M1 and anti-inflammatory M2 macrophages and their response to Candida albicans.
    Reales-Calderón JA; Aguilera-Montilla N; Corbí ÁL; Molero G; Gil C
    Proteomics; 2014 Jun; 14(12):1503-18. PubMed ID: 24687989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genes involved in beta-oxidation, energy metabolism and glyoxylate cycle are induced by Candida albicans during macrophage infection.
    Prigneau O; Porta A; Poudrier JA; Colonna-Romano S; Noël T; Maresca B
    Yeast; 2003 Jun; 20(8):723-30. PubMed ID: 12794933
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Candida albicans induces arginine biosynthetic genes in response to host-derived reactive oxygen species.
    Jiménez-López C; Collette JR; Brothers KM; Shepardson KM; Cramer RA; Wheeler RT; Lorenz MC
    Eukaryot Cell; 2013 Jan; 12(1):91-100. PubMed ID: 23143683
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.