BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 17164593)

  • 1. Twenty-five-year study of radionuclides in the Susquehanna river via periphyton biomonitors.
    Patrick R; Palms J; Kreeger D; Harris C
    Health Phys; 2007 Jan; 92(1):1-9. PubMed ID: 17164593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 25-y study of radionuclide monitoring with terrestrial and aquatic biomonitors.
    Palms J; Patrick R; Kreeger D; Harris C
    Health Phys; 2007 Mar; 92(3):219-25. PubMed ID: 17293693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Twenty-five years of environmental radionuclide concentrations near a nuclear power plant.
    Harris C; Kreeger D; Patrick R; Palms J
    Health Phys; 2015 May; 108(5):503-13. PubMed ID: 25811148
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Radioactivity levels in major French rivers: summary of monitoring chronicles acquired over the past thirty years and current status.
    Eyrolle F; Claval D; Gontier G; Antonelli C
    J Environ Monit; 2008 Jul; 10(7):800-11. PubMed ID: 18688446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new generic sub-model for radionuclide fixation in large catchments from continuous and single-pulse fallouts, as used in a river model.
    Håkanson L
    J Environ Radioact; 2004; 77(3):247-73. PubMed ID: 15381320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ambient environmental profile for the Savannah River Site.
    Rollins EM
    Health Phys; 2008 Jul; 95(1):55-68. PubMed ID: 18545030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intercomparison exercise on the determination of radionuclides in sediment from the Dudvah River.
    Durec F; Betti M; Durecova A
    Appl Radiat Isot; 2008 Nov; 66(11):1706-10. PubMed ID: 18599301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A probabilistic approach to obtaining limiting estimates of radionuclide concentration in biota.
    Higley KA; Domotor SL; Antonio EJ
    J Environ Radioact; 2003; 66(1-2):75-87. PubMed ID: 12590071
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A biomonitoring plan for assessing potential radionuclide exposure using Amchitka Island in the Aleutian chain of Alaska as a case study.
    Burger J; Gochfeld M; Kosson DS; Powers CW
    J Environ Radioact; 2007; 98(3):315-28. PubMed ID: 17683832
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Radionuclides from past uranium mining in rivers of Portugal.
    Carvalho FP; Oliveira JM; Lopes I; Batista A
    J Environ Radioact; 2007; 98(3):298-314. PubMed ID: 17624644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Intergrated assessment of the radioecological state of the biota in Moscow water objects].
    Shatokhin AM; Shmonov MG; Krasotkin VA; Umniashova EE; Nikiforova SE; Zozul' IuN
    Gig Sanit; 2009; (1):25-8. PubMed ID: 19354183
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring and assessment of radionuclide discharges from Temelín Nuclear Power Plant into the Vltava River (Czech Republic).
    Hanslík E; Ivanovová D; Juranová E; Simonek P; Jedináková-Krízová V
    J Environ Radioact; 2009 Feb; 100(2):131-8. PubMed ID: 19070946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new general dynamic model predicting radionuclide concentrations and fluxes in coastal areas from readily accessible driving variables.
    Håkanson L
    J Environ Radioact; 2005; 78(2):217-45. PubMed ID: 15511560
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applying DOE's Graded Approach for assessing radiation impacts to non-human biota at the INL.
    Morris RC
    J Environ Radioact; 2006; 87(1):77-100. PubMed ID: 16459178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-term monitoring of the Danube river--sampling techniques, radionuclide metrology and radioecological assessment.
    Maringer FJ; Gruber V; Hrachowitz M; Baumgartner A; Weilner S; Seidel C
    Appl Radiat Isot; 2009 May; 67(5):894-900. PubMed ID: 19231212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new general mechanistic river model for radionuclides from single pulse fallouts which can be run by readily accessible driving variables.
    Håkanson L
    J Environ Radioact; 2005; 80(3):357-82. PubMed ID: 15725508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Qualitative assessment of sources and general dependencies in the behavior of anthropogenic radionuclides in the Techa River.
    Melnikov VS; Popova IY; Konovalov KG; Kostyuchenko VA
    Health Phys; 2012 Jul; 103(1):53-5. PubMed ID: 22647914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An estimation method of the gross Beta activity in receiving river water of a nuclear power plant.
    Huang YJ; Tao YL; Zhang XF; Shang-Guan ZH
    Health Phys; 2010 Aug; 99 Suppl 2():S143-8. PubMed ID: 20622562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Elevated concentrations of primordial radionuclides in sediments from the Reedy River and surrounding creeks in Simpsonville, South Carolina.
    Powell BA; Hughes LD; Soreefan AM; Falta D; Wall M; DeVol TA
    J Environ Radioact; 2007; 94(3):121-8. PubMed ID: 17350148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Testing models for predicting the behaviour of radionuclides in aquatic systems.
    Monte L; Boyer P; Brittain JE; Goutal N; Heling R; Kryshev A; Kryshev I; Laptev G; Luck M; Periañez R; Siclet F; Zheleznyak M
    Appl Radiat Isot; 2008 Nov; 66(11):1736-40. PubMed ID: 18514533
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.