These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 1716532)

  • 1. Development of the cerebellar cortical efferent projection: an in-vitro anterograde tracing study in rat brain slices.
    Eisenman LM; Schalekamp MP; Voogd J
    Brain Res Dev Brain Res; 1991 Jun; 60(2):261-6. PubMed ID: 1716532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organization of the cerebellum in the pigeon (Columba livia): I. Corticonuclear and corticovestibular connections.
    Arends JJ; Zeigler HP
    J Comp Neurol; 1991 Apr; 306(2):221-44. PubMed ID: 1711053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Organization of the cerebellum in the pigeon (Columba livia): III. Corticovestibular connections with eye and neck premotor areas.
    Arends JJ; Allan RW; Zeigler HP
    J Comp Neurol; 1991 Apr; 306(2):273-89. PubMed ID: 1711055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Floccular efferents in the rhesus macaque as revealed by autoradiography and horseradish peroxidase.
    Langer T; Fuchs AF; Chubb MC; Scudder CA; Lisberger SG
    J Comp Neurol; 1985 May; 235(1):26-37. PubMed ID: 3989003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cerebellar corticonuclear and nucleocortical projections in the cat as studied with anterograde and retrograde transport of horseradish peroxidase. IV. The paraflocculus.
    Dietrichs E
    Exp Brain Res; 1981; 44(3):235-42. PubMed ID: 6171446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Connections of the paraflocculus of the cerebellum with the superior colliculus in the rat brain.
    Gayer NS; Faull RL
    Brain Res; 1988 May; 449(1-2):253-70. PubMed ID: 2456127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebellar efferents in the lizard Varanus exanthematicus. II. Projections of the cerebellar nuclei.
    Bangma GC; ten Donkelaar HJ; Dederen PJ; de Boer-van Huizen R
    J Comp Neurol; 1984 Dec; 230(2):218-30. PubMed ID: 6512019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proximal trajectory of the brachium conjunctivum in rat fetuses and its early association with the parabrachial nucleus. A study combining in vitro HRP anterograde axonal tracing and immunocytochemistry.
    Cholley B; Wassef M; Arsénio-Nunes L; Bréhier A; Sotelo C
    Brain Res Dev Brain Res; 1989 Feb; 45(2):185-202. PubMed ID: 2653663
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early dendritic development of Purkinje cells in the rat cerebellum. A light and electron microscopic study using axonal tracing in 'in vitro' slices.
    Armengol JA; Sotelo C
    Brain Res Dev Brain Res; 1991 Dec; 64(1-2):95-114. PubMed ID: 1786652
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On retro- and anterograde transport of horseradish peroxidase in the pontocerebellar fibers as studied with the Mesulam TMB technique.
    Dietrichs E; Walberg F; Nordby T
    Brain Res; 1981 Jan; 204(1):179-83. PubMed ID: 6166352
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Basal forebrain projections to the lower brain stem in the rat.
    Dinopoulos A; Papadopoulos GC; Parnavelas JG; Antonopoulos J; Karamanlidis AN
    Exp Neurol; 1989 Sep; 105(3):316-9. PubMed ID: 2475363
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topographical organization of olivocerebellar and corticonuclear connections in the rat--an WGA-HRP study: I. Lobules IX, X, and the flocculus.
    Bernard JF
    J Comp Neurol; 1987 Sep; 263(2):241-58. PubMed ID: 3667979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A note on the method of retrograde transport of horseradish peroxidase as a tool in studies of afferent cerebellar connections, particularly those from the inferior olive; with comments on the orthograde transport in Purkinje cell axons.
    Walberg F; Brodal A; Hoddevik GH
    Exp Brain Res; 1976 Feb; 24(4):383-401. PubMed ID: 57065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An HRP study of hypothalamo-cerebellar and cerebello-hypothalamic connections in squirrel monkey (Saimiri sciureus).
    Haines DE; Dietrichs E
    J Comp Neurol; 1984 Nov; 229(4):559-75. PubMed ID: 6209312
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey.
    Akbarian S; Grüsser OJ; Guldin WO
    J Comp Neurol; 1994 Jan; 339(3):421-37. PubMed ID: 7510732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cerebellar efferents in the lizard Varanus exanthematicus. I. Corticonuclear projections.
    Bangma GC; ten Donkelaar HJ
    J Comp Neurol; 1984 Sep; 228(3):447-59. PubMed ID: 6480921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tecto-olivo-cerebellar pathway in the rat.
    Hess DT
    Brain Res; 1982 Oct; 250(1):143-8. PubMed ID: 6182946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topography and synaptology of mamillary body projections to the mesencephalon and pons in the rat.
    Allen GV; Hopkins DA
    J Comp Neurol; 1990 Nov; 301(2):214-31. PubMed ID: 1702105
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The vestibular complex of the American opossum didelphis virginiana. II. Afferent and efferent connections.
    Henkel CK; Martin GF
    J Comp Neurol; 1977 Mar; 172(2):321-48. PubMed ID: 65367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bonyfish lateral line efferent neurons identified by retrograde axonal transport of horseradish peroxidase (HRP).
    Claas B; Münz H
    Brain Res; 1980 Jul; 193(1):249-53. PubMed ID: 6155178
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.