These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 17165441)

  • 1. Chromate sorption and reduction kinetics onto an aminated biosorbent.
    Deng S; Ting YP; Yu G
    Water Sci Technol; 2006; 54(10):1-8. PubMed ID: 17165441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms.
    Deng S; Ting YP
    Environ Sci Technol; 2005 Nov; 39(21):8490-6. PubMed ID: 16294892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of As(V) and As(III) from water with a PEI-modified fungal biomass.
    Deng S; Ting YP
    Water Sci Technol; 2007; 55(1-2):177-85. PubMed ID: 17305138
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Preparation of a novel aminated fungal biomass and its sorption for typical endocrine disruptors].
    Ma R; Deng SB; Yu G
    Huan Jing Ke Xue; 2008 Mar; 29(3):714-20. PubMed ID: 18649533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced removal of pentachlorophenol and 2,4-D from aqueous solution by an aminated biosorbent.
    Deng S; Ma R; Yu Q; Huang J; Yu G
    J Hazard Mater; 2009 Jun; 165(1-3):408-14. PubMed ID: 19013710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Graphene oxide chemically reduced and functionalized with KOH-PEI for efficient Cr(VI) adsorption and reduction in acidic medium.
    Tadjenant Y; Dokhan N; Barras A; Addad A; Jijie R; Szunerits S; Boukherroub R
    Chemosphere; 2020 Nov; 258():127316. PubMed ID: 32559494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyethylenimine modified biochar adsorbent for hexavalent chromium removal from the aqueous solution.
    Ma Y; Liu WJ; Zhang N; Li YS; Jiang H; Sheng GP
    Bioresour Technol; 2014 Oct; 169():403-408. PubMed ID: 25069094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of the involved sorption mechanisms of Cr(VI) and Cr(III) species onto dried Salvinia auriculata biomass.
    Módenes AN; de Oliveira AP; Espinoza-Quiñones FR; Trigueros DEG; Kroumov AD; Bergamasco R
    Chemosphere; 2017 Apr; 172():373-383. PubMed ID: 28088528
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface-modified Phanerochaete chrysosporium as a biosorbent for Cr(VI)-contaminated wastewater.
    Chen GQ; Zhang WJ; Zeng GM; Huang JH; Wang L; Shen GL
    J Hazard Mater; 2011 Feb; 186(2-3):2138-43. PubMed ID: 21247693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II).
    Deng S; Ting YP
    Water Res; 2005 May; 39(10):2167-77. PubMed ID: 15927227
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sorption and detoxification of chromium(VI) by aerobic granules functionalized with polyethylenimine.
    Sun XF; Ma Y; Liu XW; Wang SG; Gao BY; Li XM
    Water Res; 2010 Apr; 44(8):2517-24. PubMed ID: 20181374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption and recovery of platinum from simulated spent catalyst solution and refinery wastewater using chemically modified biomass as a novel sorbent.
    Garole DJ; Choudhary BC; Paul D; Borse AU
    Environ Sci Pollut Res Int; 2018 Apr; 25(11):10911-10925. PubMed ID: 29397510
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Cu(II) and Cr(VI) biosorption capacity on poly(ethylenimine) grafted aerobic granular sludge.
    Sun XF; Liu C; Ma Y; Wang SG; Gao BY; Li XM
    Colloids Surf B Biointerfaces; 2011 Feb; 82(2):456-62. PubMed ID: 21041069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of chromium (VI) from aqueous solution by biomass of Cladosporium cladosporioides.
    Garza-González MT; Ramírez-Vázquez JE; García-Hernández MLÁ; Cantú-Cárdenas ME; Liñan-Montes A; Villarreal-Chiu JF
    Water Sci Technol; 2017 Nov; 76(9-10):2494-2502. PubMed ID: 29144307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Application of a by-product of Lentinus edodes to the bioremediation of chromate contaminated water.
    Chen GQ; Zeng GM; Tu X; Niu CG; Huang GH; Jiang W
    J Hazard Mater; 2006 Jul; 135(1-3):249-55. PubMed ID: 16386843
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosted Cr(VI) sorption coupled reduction from aqueous solution using quaternized algal/alginate@PEI beads.
    Zhang Y; Mo Y; Vincent T; Faur C; Guibal E
    Chemosphere; 2021 Oct; 281():130844. PubMed ID: 34022599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of pH on the Redox and Sorption Properties of Native and Phosphorylated Starches.
    Dyrek K; Wenda E; Bidzińska E; Kruczała K
    Molecules; 2022 Sep; 27(18):. PubMed ID: 36144731
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyethylenimine-functionalized silk sericin beads for high-performance remediation of hexavalent chromium from aqueous solution.
    Kwak HW; Lee KH
    Chemosphere; 2018 Sep; 207():507-516. PubMed ID: 29843026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel biosorbent functionalized pillar[5]arene: Synthesis, characterization and effective biosorption of Cr(VI).
    Bilgic A; Cimen A; Kursunlu AN
    Sci Total Environ; 2023 Jan; 857(Pt 2):159312. PubMed ID: 36220470
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-modified spherical lignin particles with superior Cr(VI) removal efficiency.
    Kwak HW; Lee H; Lee KH
    Chemosphere; 2020 Jan; 239():124733. PubMed ID: 31526991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.