These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 17165455)

  • 1. Removal of endocrine-disrupting chemicals by ozonation in sewage treatment.
    Zhang H; Yamada H; Kim SE; Kim HS; Tsuno H
    Water Sci Technol; 2006; 54(10):123-32. PubMed ID: 17165455
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ozonation parameter for removal of oestrogenicity from secondary effluent without by-products.
    Kim SE; Yamada H; Tsuno H
    Water Sci Technol; 2007; 55(1-2):233-40. PubMed ID: 17305145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of endocrine-disrupting chemicals during ozonation of municipal sewage with brominated byproducts control.
    Zhang H; Yamada H; Tsuno H
    Environ Sci Technol; 2008 May; 42(9):3375-80. PubMed ID: 18522121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal of endocrine-disrupting chemicals and conventional pollutants in a continuous-operating activated sludge process integrated with ozonation for excess sludge reduction.
    Nie Y; Qiang Z; Ben W; Liu J
    Chemosphere; 2014 Jun; 105():133-8. PubMed ID: 24485815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro characterization of the effectiveness of enhanced sewage treatment processes to eliminate endocrine activity of hospital effluents.
    Maletz S; Floehr T; Beier S; Klümper C; Brouwer A; Behnisch P; Higley E; Giesy JP; Hecker M; Gebhardt W; Linnemann V; Pinnekamp J; Hollert H
    Water Res; 2013 Mar; 47(4):1545-57. PubMed ID: 23305681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation behavior of 17alpha-ethinylestradiol by ozonation in the synthetic secondary effluent.
    Zhang Z; Zhu H; Wen X; Si X
    J Environ Sci (China); 2012; 24(2):228-33. PubMed ID: 22655381
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Degradation of endocrine-disrupting chemicals during activated sludge reduction by ozone.
    Qiang Z; Nie Y; Ben W; Qu J; Zhang H
    Chemosphere; 2013 Apr; 91(3):366-73. PubMed ID: 23273738
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ozonation of estrogenic chemicals in biologically treated sewage.
    Hansen KM; Andersen HR; Ledin A
    Water Sci Technol; 2010; 62(3):649-57. PubMed ID: 20706012
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ozonation and activated carbon treatment of sewage effluents: removal of endocrine activity and cytotoxicity.
    Stalter D; Magdeburg A; Wagner M; Oehlmann J
    Water Res; 2011 Jan; 45(3):1015-24. PubMed ID: 21074820
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The removal of estrogenic activity and control of brominated by-products during ozonation of secondary effluents.
    Kim HS; Yamada H; Tsuno H
    Water Res; 2007 Apr; 41(7):1441-6. PubMed ID: 17316744
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study of catalyzed ozonation for advanced treatment of pulp and paper mill effluents.
    Fontanier V; Farines V; Albet J; Baig S; Molinier J
    Water Res; 2006 Jan; 40(2):303-10. PubMed ID: 16376967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. JEM spotlight: Monitoring the treatment efficiency of a full scale ozonation on a sewage treatment plant with a mode-of-action based test battery.
    Escher BI; Bramaz N; Ort C
    J Environ Monit; 2009 Oct; 11(10):1836-46. PubMed ID: 19809706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of some operational parameters on the decolorization of textile effluents and dye solutions by ozonation.
    Sevimli MF; Sarikaya HZ
    Environ Technol; 2005 Feb; 26(2):135-43. PubMed ID: 15791794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of ozone and peroxone on the removal of endocrine disrupting chemicals (EDCs) coupled with cost analysis.
    Olmez-Hanci T; Dogruel S; Emek ADA; Yılmazer CE; Çınar S; Kiraz O; Citil E; Orhon AK; Siltu E; Gucver SM; Ozgun OK; Tanik A; Yetis U
    Water Sci Technol; 2020 Aug; 82(4):640-650. PubMed ID: 32970617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of estrogen decomposition by ozonation.
    Hashimoto T; Takahashi K; Murakami T
    Water Sci Technol; 2006; 54(10):87-93. PubMed ID: 17165451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of an ozonation system for reduced waste sludge generation.
    Egemen E; Corpening J; Nirmalakhandan N
    Water Sci Technol; 2001; 44(2-3):445-52. PubMed ID: 11548017
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of effluent organic matters on endocrine disrupting chemical removal by ultrafiltration and ozonation in synthetic secondary effluent.
    Si X; Hu Z; Ding D; Fu X
    J Environ Sci (China); 2019 Feb; 76():57-64. PubMed ID: 30528035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of selected endocrine disrupting chemicals and personal care products in surface waters and secondary wastewater by ozonation.
    Tay KS; Rahman NA; Abas MR
    Water Environ Res; 2011 Aug; 83(8):684-91. PubMed ID: 21905405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen uptake rate measurements for evaluation of ozonation of municipal wastewater.
    Hagman M; Tykesson E; Hjorth B; Jansen LC
    Environ Technol; 2007 Feb; 28(2):177-83. PubMed ID: 17396412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Minimization of sludge production in biological processes: an alternative solution for the problem of sludge disposal.
    Deleris S; Geauge V; Camacho P; Debelletontaine H; Paul E
    Water Sci Technol; 2002; 46(10):63-70. PubMed ID: 12479454
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.