These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
157 related articles for article (PubMed ID: 17165539)
1. [Optimum separation conditions of catechin compounds by HCI program in reversed-phase high performance liquid chromatography]. Jin Y; Row KH Se Pu; 2006 Sep; 24(5):466-70. PubMed ID: 17165539 [TBL] [Abstract][Full Text] [Related]
2. Optimum separation condition of peptides in reversed-phase liquid chromatography. Lee SK; Row KH J Chromatogr B Analyt Technol Biomed Life Sci; 2004 Feb; 800(1-2):115-20. PubMed ID: 14698244 [TBL] [Abstract][Full Text] [Related]
3. [Fast optimization of stepwise gradient conditions for ternary mobile phase in reversed-phase high performance liquid chromatography]. Shan YC; Zhang YK; Zhao RH Se Pu; 2002 Jul; 20(4):289-94. PubMed ID: 12541907 [TBL] [Abstract][Full Text] [Related]
4. New approach to linear gradient elution used for optimisation in reversed-phase liquid chromatography. Nikitas P; Pappa-Louisi A J Chromatogr A; 2005 Mar; 1068(2):279-87. PubMed ID: 15830934 [TBL] [Abstract][Full Text] [Related]
5. Prediction of elution bandwidth for purine compounds by a retention model in reversed-phase HPLC with linear-gradient elution. Jin CH; Lee JW; Row KH J Sep Sci; 2008 Jan; 31(1):23-9. PubMed ID: 18064619 [TBL] [Abstract][Full Text] [Related]
6. Optimization of the separation of chlorophenols with stepwise gradient elution in reversed phase liquid chromatography. Hadjmohammadi MR; Kamel K; Fatemi MH J Sep Sci; 2007 Nov; 30(16):2687-92. PubMed ID: 17763519 [TBL] [Abstract][Full Text] [Related]
7. Eco-friendly separation of catechins using cyclodextrins as mobile phase additives in RP-HPLC. Bi W; Li S; Row KH Phytochem Anal; 2012; 23(4):308-14. PubMed ID: 21997746 [TBL] [Abstract][Full Text] [Related]
8. Synthesis of a mixed-model stationary phase derived from glutamine for HPLC separation of structurally different biologically active compounds: HILIC and reversed-phase applications. Aral T; Aral H; Ziyadanoğulları B; Ziyadanoğulları R Talanta; 2015 Jan; 131():64-73. PubMed ID: 25281074 [TBL] [Abstract][Full Text] [Related]
9. [Simultaneous determination of 11 polyphenols in ratafee by reversed-phase high performance liquid chromatography]. Xu W; Li D; Liu J; Yang Y Wei Sheng Yan Jiu; 2013 May; 42(3):497-503, 528. PubMed ID: 23805535 [TBL] [Abstract][Full Text] [Related]
10. Influence of variation in mobile phase pH and solute pK(a) with the change of organic modifier fraction on QSRRs of hydrophobicity and RP-HPLC retention of weakly acidic compounds. Han SY; Liang C; Zou K; Qiao JQ; Lian HZ; Ge X Talanta; 2012 Nov; 101():64-70. PubMed ID: 23158292 [TBL] [Abstract][Full Text] [Related]
12. Retention prediction of a set of amino acids under gradient elution conditions in hydrophilic interaction liquid chromatography. Gika H; Theodoridis G; Mattivi F; Vrhovsek U; Pappa-Louisi A J Sep Sci; 2012 Feb; 35(3):376-83. PubMed ID: 22228618 [TBL] [Abstract][Full Text] [Related]
13. Approaches to model the retention and peak profile in linear gradient reversed-phase liquid chromatography. Baeza-Baeza JJ; Ortiz-Bolsico C; Torres-Lapasió JR; García-Álvarez-Coque MC J Chromatogr A; 2013 Apr; 1284():28-35. PubMed ID: 23453677 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of three temperature- and mobile phase-dependent retention models for reversed-phase liquid chromatographic retention and apparent retention enthalpy. Horner AR; Wilson RE; Groskreutz SR; Murray BE; Weber SG J Chromatogr A; 2019 Mar; 1589():73-82. PubMed ID: 30626503 [TBL] [Abstract][Full Text] [Related]
15. Utility of linear and nonlinear models for retention prediction in liquid chromatography. Gilar M; Hill J; McDonald TS; Gritti F J Chromatogr A; 2020 Feb; 1613():460690. PubMed ID: 31727355 [TBL] [Abstract][Full Text] [Related]
16. Determination of reversed-phase high performance liquid chromatography based octanol-water partition coefficients for neutral and ionizable compounds: Methodology evaluation. Liang C; Qiao JQ; Lian HZ J Chromatogr A; 2017 Dec; 1528():25-34. PubMed ID: 29103597 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of novel amylose and cellulose-based chiral stationary phases for the stereoisomer separation of flavanones by means of nano-liquid chromatography. Si-Ahmed K; Aturki Z; Chankvetadze B; Fanali S Anal Chim Acta; 2012 Aug; 738():85-94. PubMed ID: 22790704 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous optimization of pH and binary organic composition by grid form modeling of the retention behavior in reversed-phase ultra high-performance liquid chromatography. Sasaki T; Todoroki K; Toyo'oka T J Pharm Biomed Anal; 2017 Nov; 146():251-260. PubMed ID: 28888712 [TBL] [Abstract][Full Text] [Related]
20. Development of a novel microextraction by packed sorbent-based approach followed by ultrahigh pressure liquid chromatography as a powerful technique for quantification phenolic constituents of biological interest in wines. Gonçalves J; Mendes B; Silva CL; Câmara JS J Chromatogr A; 2012 Mar; 1229():13-23. PubMed ID: 22305355 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]