These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 17165660)

  • 1. Ambulatory monitoring of disordered voices.
    Hillman RE; Heaton JT; Masaki A; Zeitels SM; Cheyne HA
    Ann Otol Rhinol Laryngol; 2006 Nov; 115(11):795-801. PubMed ID: 17165660
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development and testing of a portable vocal accumulator.
    Cheyne HA; Hanson HM; Genereux RP; Stevens KN; Hillman RE
    J Speech Lang Hear Res; 2003 Dec; 46(6):1457-67. PubMed ID: 14700368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Teachers' voice use in teaching environments: a field study using ambulatory phonation monitor.
    Lyberg Åhlander V; Pelegrín García D; Whitling S; Rydell R; Löfqvist A
    J Voice; 2014 Nov; 28(6):841.e5-15. PubMed ID: 24962227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of voice-use profiles between elementary classroom and music teachers.
    Morrow SL; Connor NP
    J Voice; 2011 May; 25(3):367-72. PubMed ID: 20359861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy of Self-Reported Estimates of Daily Voice Use in Adults With Normal and Disordered Voices.
    Mehta DD; Cheyne HA; Wehner A; Heaton JT; Hillman RE
    Am J Speech Lang Pathol; 2016 Nov; 25(4):634-641. PubMed ID: 27788279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessments of Voice Use and Voice Quality Among College/University Singing Students Ages 18-24 Through Ambulatory Monitoring With a Full Accelerometer Signal.
    Schloneger MJ; Hunter EJ
    J Voice; 2017 Jan; 31(1):124.e21-124.e30. PubMed ID: 26897545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The difference between first and second harmonic amplitudes correlates between glottal airflow and neck-surface accelerometer signals during phonation.
    Mehta DD; Espinoza VM; Van Stan JH; Zañartu M; Hillman RE
    J Acoust Soc Am; 2019 May; 145(5):EL386. PubMed ID: 31153299
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acoustic analysis of voice in normal and high pitch phonation: a comparative study.
    Aithal VU; Bellur R; John S; Varghese C; Guddattu V
    Folia Phoniatr Logop; 2012; 64(1):48-53. PubMed ID: 22076072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voice Relative Fundamental Frequency Via Neck-Skin Acceleration in Individuals With Voice Disorders.
    Lien YA; Calabrese CR; Michener CM; Murray EH; Van Stan JH; Mehta DD; Hillman RE; Noordzij JP; Stepp CE
    J Speech Lang Hear Res; 2015 Oct; 58(5):1482-7. PubMed ID: 26134171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural Voice Use in Patients With Voice Disorders and Vocally Healthy Speakers Based on 2 Days Voice Accumulator Information From a Database.
    Södersten M; Salomão GL; McAllister A; Ternström S
    J Voice; 2015 Sep; 29(5):646.e1-9. PubMed ID: 26073776
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The relationship between perception of vocal effort and relative fundamental frequency during voicing offset and onset.
    Stepp CE; Sawin DE; Eadie TL
    J Speech Lang Hear Res; 2012 Dec; 55(6):1887-96. PubMed ID: 22615477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Real-time estimation of aerodynamic features for ambulatory voice biofeedback.
    Llico AF; Zañartu M; González AJ; Wodicka GR; Mehta DD; Van Stan JH; Hillman RE
    J Acoust Soc Am; 2015 Jul; 138(1):EL14-9. PubMed ID: 26233054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-organic dysphonia. II. A comparison of subglottal pressures in normal and pathological voices.
    Gramming P
    Acta Otolaryngol; 1989; 107(1-2):156-60. PubMed ID: 2929314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perception of vocal tremor during sustained phonation compared with sentence context.
    Lederle A; Barkmeier-Kraemer J; Finnegan E
    J Voice; 2012 Sep; 26(5):668.e1-9. PubMed ID: 22521323
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of a clinical vocal loading test with long-time measurement of voice.
    Whitling S; Rydell R; Lyberg Åhlander V
    J Voice; 2015 Mar; 29(2):261.e13-27. PubMed ID: 25499518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mobile voice health monitoring using a wearable accelerometer sensor and a smartphone platform.
    Mehta DD; Zañartu M; Feng SW; Cheyne HA; Hillman RE
    IEEE Trans Biomed Eng; 2012 Nov; 59(11):3090-6. PubMed ID: 22875236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acoustic assessment of the voices of children using nonlinear analysis: proposal for assessment and vocal monitoring.
    Lopes LW; Costa SL; Costa WC; Correia SÉ; Vieira VJ
    J Voice; 2014 Sep; 28(5):565-73. PubMed ID: 24836362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of the female vocal quality and resonance in professional voice users taking oral contraceptive pills: a multiparameter approach.
    Van Lierde KM; Claeys S; De Bodt M; Van Cauwenberge P
    Laryngoscope; 2006 Oct; 116(10):1894-8. PubMed ID: 17003704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consistency of the Signature of Phonotraumatic Vocal Hyperfunction Across Different Ambulatory Voice Measures.
    Ghasemzadeh H; Hillman RE; Mehta DD
    J Speech Lang Hear Res; 2024 Jul; 67(7):1997-2020. PubMed ID: 38861454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use and role of the Ambulatory Phonation Monitor (APM) in voice assessment.
    Nacci A; Fattori B; Mancini V; Panicucci E; Ursino F; Cartaino FM; Berrettini S
    Acta Otorhinolaryngol Ital; 2013 Feb; 33(1):49-55. PubMed ID: 23620641
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.