BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 17165790)

  • 1. A combined quantum mechanical and molecular mechanical study of the reaction mechanism and alpha-amino acidity in alanine racemase.
    Major DT; Gao J
    J Am Chem Soc; 2006 Dec; 128(50):16345-57. PubMed ID: 17165790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition state stabilization and alpha-amino carbon acidity in alanine racemase.
    Major DT; Nam K; Gao J
    J Am Chem Soc; 2006 Jun; 128(25):8114-5. PubMed ID: 16787057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding catalytic specificity in alanine racemase from quantum mechanical and molecular mechanical simulations of the arginine 219 mutant.
    Rubinstein A; Major DT
    Biochemistry; 2010 May; 49(18):3957-64. PubMed ID: 20394349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsic primary and secondary hydrogen kinetic isotope effects for alanine racemase from global analysis of progress curves.
    Spies MA; Toney MD
    J Am Chem Soc; 2007 Sep; 129(35):10678-85. PubMed ID: 17691728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction of alanine racemase with 1-aminoethylphosphonic acid forms a stable external aldimine.
    Stamper GF; Morollo AA; Ringe D
    Biochemistry; 1998 Jul; 37(29):10438-45. PubMed ID: 9671513
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reaction specificity in pyridoxal phosphate enzymes.
    Toney MD
    Arch Biochem Biophys; 2005 Jan; 433(1):279-87. PubMed ID: 15581583
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiple hydrogen kinetic isotope effects for enzymes catalyzing exchange with solvent: application to alanine racemase.
    Spies MA; Toney MD
    Biochemistry; 2003 May; 42(17):5099-107. PubMed ID: 12718553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The imine-pyridine torsion of the pyridoxal 5'-phosphate Schiff base of aspartate aminotransferase lowers its pKa in the unliganded enzyme and is crucial for the successive increase in the pKa during catalysis.
    Hayashi H; Mizuguchi H; Kagamiyama H
    Biochemistry; 1998 Oct; 37(43):15076-85. PubMed ID: 9790670
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulations of the intramolecular proton transfer and carbanion stabilization in the pyridoxal 5'-phosphate dependent enzymes L-dopa decarboxylase and alanine racemase.
    Lin YL; Gao J; Rubinstein A; Major DT
    Biochim Biophys Acta; 2011 Nov; 1814(11):1438-46. PubMed ID: 21600315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics studies of alanine racemase: a structural model for drug design.
    Mustata GI; Soares TA; Briggs JM
    Biopolymers; 2003 Oct; 70(2):186-200. PubMed ID: 14517907
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of the structure of alanine racemase from Bacillus stearothermophilus at 1.9-A resolution.
    Shaw JP; Petsko GA; Ringe D
    Biochemistry; 1997 Feb; 36(6):1329-42. PubMed ID: 9063881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalyzing racemizations in the absence of a cofactor: the reaction mechanism in proline racemase.
    Rubinstein A; Major DT
    J Am Chem Soc; 2009 Jun; 131(24):8513-21. PubMed ID: 19492806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a two-base mechanism involving tyrosine-265 from arginine-219 mutants of alanine racemase.
    Sun S; Toney MD
    Biochemistry; 1999 Mar; 38(13):4058-65. PubMed ID: 10194319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Treponema denticola cystalysin exhibits significant alanine racemase activity accompanied by transamination: mechanistic implications.
    Bertoldi M; Cellini B; Paiardini A; Di Salvo M; Borri Voltattorni C
    Biochem J; 2003 Apr; 371(Pt 2):473-83. PubMed ID: 12519070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alanine racemase free energy profiles from global analyses of progress curves.
    Spies MA; Woodward JJ; Watnik MR; Toney MD
    J Am Chem Soc; 2004 Jun; 126(24):7464-75. PubMed ID: 15198593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.
    Gao J; Major DT; Fan Y; Lin YL; Ma S; Wong KY
    Methods Mol Biol; 2008; 443():37-62. PubMed ID: 18446281
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase.
    Garcia-Viloca M; Truhlar DG; Gao J
    Biochemistry; 2003 Nov; 42(46):13558-75. PubMed ID: 14622003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the pyridine nitrogen in pyridoxal 5'-phosphate catalysis: activity of three classes of PLP enzymes reconstituted with deazapyridoxal 5'-phosphate.
    Griswold WR; Toney MD
    J Am Chem Soc; 2011 Sep; 133(37):14823-30. PubMed ID: 21827189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Covalent catalysis by pyridoxal: evaluation of the effect of the cofactor on the carbon acidity of glycine.
    Toth K; Richard JP
    J Am Chem Soc; 2007 Mar; 129(10):3013-21. PubMed ID: 17298067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On the ionization state of the substrate in the active site of glutamate racemase. A QM/MM study about the importance of being zwitterionic.
    Puig E; Garcia-Viloca M; González-Lafont A; Lluch JM
    J Phys Chem A; 2006 Jan; 110(2):717-25. PubMed ID: 16405345
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.