BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

355 related articles for article (PubMed ID: 17165812)

  • 1. Optimizing band width and resolution in micro-free flow electrophoresis.
    Fonslow BR; Bowser MT
    Anal Chem; 2006 Dec; 78(24):8236-44. PubMed ID: 17165812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniaturizing free-flow electrophoresis - a critical review.
    Kohlheyer D; Eijkel JC; van den Berg A; Schasfoort RB
    Electrophoresis; 2008 Mar; 29(5):977-93. PubMed ID: 18232029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using channel depth to isolate and control flow in a micro free-flow electrophoresis device.
    Fonslow BR; Barocas VH; Bowser MT
    Anal Chem; 2006 Aug; 78(15):5369-74. PubMed ID: 16878871
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsteady transport phenomena in free-flow electrophoresis--prerequisite of ultrafast sample cleaning in microfluidic devices.
    Klepárník K; Otevrel M
    Electrophoresis; 2004 Nov; 25(21-22):3633-42. PubMed ID: 15565699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusion as major source of band broadening in field-amplified sample stacking under negligible electroosmotic flow velocity conditions.
    Huhn C; Pyell U
    J Chromatogr A; 2010 Jun; 1217(26):4476-86. PubMed ID: 20452606
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative microfluidic separation of DNA in self-assembled magnetic matrixes.
    Minc N; Fütterer C; Dorfman KD; Bancaud A; Gosse C; Goubault C; Viovy JL
    Anal Chem; 2004 Jul; 76(13):3770-6. PubMed ID: 15228353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells.
    Wang L; Lu J; Marchenko SA; Monuki ES; Flanagan LA; Lee AP
    Electrophoresis; 2009 Mar; 30(5):782-91. PubMed ID: 19197906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational study of velocity profile obtained in microfluidic channel bearing a fluidic transistor: toward highly resolved electrophoretic separation.
    Charhrouchni I; Pallandre A; Le Potier I; Deslouis C; Haghiri-Gosnet AM
    Electrophoresis; 2013 Mar; 34(5):725-35. PubMed ID: 23254905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of varying electroosmotic flow on the effective diffusion in electric field gradient separations.
    Maynes D; Tenny J; Webbd BW; Lee ML
    Electrophoresis; 2008 Feb; 29(3):549-60. PubMed ID: 18200632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-orthogonal micro-free flow electrophoresis: from theory to design concept.
    Evenhuis CJ; Okhonin V; Krylov SN
    Anal Chim Acta; 2010 Jul; 674(1):102-9. PubMed ID: 20638506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zone broadening in electrophoresis with special reference to high-performance electrophoresis in capillaries: an interplay between theory and practice.
    Hjertén S
    Electrophoresis; 1990 Sep; 11(9):665-90. PubMed ID: 2257839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulation of two-dimensional fully developed laminar flow for a magneto-hydrodynamic (MHD) pump.
    Wang PJ; Chang CY; Chang ML
    Biosens Bioelectron; 2004 Jul; 20(1):115-21. PubMed ID: 15142583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic high-resolution free-flow isoelectric focusing.
    Kohlheyer D; Eijkel JC; Schlautmann S; van den Berg A; Schasfoort RB
    Anal Chem; 2007 Nov; 79(21):8190-8. PubMed ID: 17902700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Addressable electric fields for size-fractioned sample extraction in microfluidic devices.
    Lin R; Burke DT; Burns MA
    Anal Chem; 2005 Jul; 77(14):4338-47. PubMed ID: 16013844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Capillary and microfluidic gradient elution isotachophoresis coupled to capillary zone electrophoresis for femtomolar amino acid detection limits.
    Davis NI; Mamunooru M; Vyas CA; Shackman JG
    Anal Chem; 2009 Jul; 81(13):5452-9. PubMed ID: 19476344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of the zone broadening contributions in free-flow electrophoresis.
    Mahmud S; Ramproshad S; Deb R; Dutta D
    Electrophoresis; 2023 Oct; 44(19-20):1519-1538. PubMed ID: 37548630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Surface Adsorption on Temporal and Spatial Broadening in Micro Free Flow Electrophoresis.
    Geiger M; Harstad RK; Bowser MT
    Anal Chem; 2015 Dec; 87(23):11682-90. PubMed ID: 26496470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro free-flow electrophoresis: theory and applications.
    Turgeon RT; Bowser MT
    Anal Bioanal Chem; 2009 May; 394(1):187-98. PubMed ID: 19290514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Band-broadening in capillary zone electrophoresis with axial temperature gradients.
    Xuan X; Li D
    Electrophoresis; 2005 Jan; 26(1):166-75. PubMed ID: 15624181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.