BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 17165869)

  • 1. Effects of hydrogen bonding on the ring stretching modes of pyridine.
    Berg ER; Freeman SA; Green DD; Ulness DJ
    J Phys Chem A; 2006 Dec; 110(50):13434-46. PubMed ID: 17165869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Halogen bonding in iodo-perfluoroalkane/pyridine mixtures.
    Fan H; Eliason JK; Moliva A CD; Olson JL; Flancher SM; Gealy MW; Ulness DJ
    J Phys Chem A; 2009 Dec; 113(51):14052-9. PubMed ID: 19954197
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measuring acetic acid dimer modes by ultrafast time-domain Raman spectroscopy.
    Heisler IA; Mazur K; Yamaguchi S; Tominaga K; Meech SR
    Phys Chem Chem Phys; 2011 Sep; 13(34):15573-9. PubMed ID: 21625711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical study on effects of hydrogen bonding on the ring stretching modes of pyridine.
    Li AY; Ji HB; Cao LJ
    J Chem Phys; 2009 Oct; 131(16):164305. PubMed ID: 19894945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A combined Raman, DFT and MD study of the solvation dynamics and the adsorption process of pyridine in silver hydrosols.
    Pagliai M; Bellucci L; Muniz-Miranda M; Cardini G; Schettino V
    Phys Chem Chem Phys; 2006 Jan; 8(1):171-8. PubMed ID: 16482258
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion-pair interaction in pyridinium carboxylate solutions.
    Berg ER; Green DD; Moliva DC; Bjerke BT; Gealy MW; Ulness DJ
    J Phys Chem A; 2008 Feb; 112(5):833-8. PubMed ID: 18189374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vibrational dephasing and frequency shifts of hydrogen-bonded pyridine-water complexes.
    Kalampounias AG; Tsilomelekis G; Boghosian S
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jan; 135():31-8. PubMed ID: 25048405
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pressure response of Raman spectra of water and its implication to the change in hydrogen bond interaction.
    Okada T; Komatsu K; Kawamoto T; Yamanaka T; Kagi H
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Aug; 61(10):2423-7. PubMed ID: 16029865
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Raman intensity interpretation of pyridine liquid and its adsorption on the Ag electrode via bond polarizabilities.
    Fang C; Wu G
    Spectrochim Acta A Mol Biomol Spectrosc; 2010 Dec; 77(5):948-53. PubMed ID: 20851667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen bond dynamics and water structure in glucose-water solutions by depolarized Rayleigh scattering and low-frequency Raman spectroscopy.
    Paolantoni M; Sassi P; Morresi A; Santini S
    J Chem Phys; 2007 Jul; 127(2):024504. PubMed ID: 17640134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen-bonding between pyrimidine and water: a vibrational spectroscopic analysis.
    Schlücker S; Koster J; Singh RK; Asthana BP
    J Phys Chem A; 2007 Jun; 111(24):5185-91. PubMed ID: 17523603
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Energy transfer dynamics in the presence of preferential hydrogen bonding: collisions of highly vibrationally excited pyridine-h5, -d5, and -f5 with water.
    Liu Q; Havey DK; Mullin AS
    J Phys Chem A; 2008 Oct; 112(39):9509-15. PubMed ID: 18710206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen bonded network properties in liquid formamide.
    Bakó I; Megyes T; Bálint S; Chihaia V; Bellissent-Funel MC; Krienke H; Kopf A; Suh SH
    J Chem Phys; 2010 Jan; 132(1):014506. PubMed ID: 20078171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton dynamics in the strong chelate hydrogen bond of crystalline picolinic acid N-oxide. A new computational approach and infrared, raman and INS study.
    Stare J; Panek J; Eckert J; Grdadolnik J; Mavri J; Hadzi D
    J Phys Chem A; 2008 Feb; 112(7):1576-86. PubMed ID: 18225869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen-bond assisted enormous broadening of infrared spectra of phenol-water cationic cluster: an ab initio mixed quantum-classical study.
    Yamashita T; Takatsuka K
    J Chem Phys; 2007 Feb; 126(7):074304. PubMed ID: 17328602
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of hydrogen bonding on vibrational normal modes of pyrimidine.
    Howard AA; Tschumper GS; Hammer NI
    J Phys Chem A; 2010 Jul; 114(25):6803-10. PubMed ID: 20527867
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Raman study on preferential interactions in the formamide/pyridine/pyridazine system and complementary thermodynamic information on the formamide/pyridazine mixture.
    da Silva EF; Alves WA
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 102():71-4. PubMed ID: 23220520
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Studies on intramolecular hydrogen bonding between the pyridine nitrogen and the amide hydrogen of the peptide: synthesis and conformational analysis of tripeptides containing novel amino acids with a pyridine ring.
    Hanyu M; Ninomiya D; Yanagihara R; Murashima T; Miyazawa T; Yamada T
    J Pept Sci; 2005 Jul; 11(8):491-8. PubMed ID: 15747319
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 15N nuclear magnetic resonance studies of acid-base properties of pyridoxal-5'-phosphate aldimines in aqueous solution.
    Sharif S; Huot MC; Tolstoy PM; Toney MD; Jonsson KH; Limbach HH
    J Phys Chem B; 2007 Apr; 111(15):3869-76. PubMed ID: 17388551
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical study of binding interactions and vibrational Raman spectra of water in hydrogen-bonded anionic complexes: (H2O)n- (n = 2 and 3), H2O...X- (X = F, Cl, Br, and I), and H2O...M- (M = Cu, Ag, and Au).
    Wu DY; Duan S; Liu XM; Xu YC; Jiang YX; Ren B; Xu X; Lin SH; Tian ZQ
    J Phys Chem A; 2008 Feb; 112(6):1313-21. PubMed ID: 18215023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.