These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 17165975)

  • 1. III-V nitride epilayers for photoelectrochemical water splitting: GaPN and GaAsPN.
    Deutsch TG; Koval CA; Turner JA
    J Phys Chem B; 2006 Dec; 110(50):25297-307. PubMed ID: 17165975
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic band structure of titania semiconductor nanosheets revealed by electrochemical and photoelectrochemical studies.
    Sakai N; Ebina Y; Takada K; Sasaki T
    J Am Chem Soc; 2004 May; 126(18):5851-8. PubMed ID: 15125677
    [TBL] [Abstract][Full Text] [Related]  

  • 3. (Oxy)nitrides with d0-electronic configuration as photocatalysts and photoanodes that operate under a wide range of visible light for overall water splitting.
    Maeda K
    Phys Chem Chem Phys; 2013 Jul; 15(26):10537-48. PubMed ID: 23337977
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epitaxial III-V films and surfaces for photoelectrocatalysis.
    Döscher H; Supplie O; May MM; Sippel P; Heine C; Muñoz AG; Eichberger R; Lewerenz HJ; Hannappel T
    Chemphyschem; 2012 Aug; 13(12):2899-909. PubMed ID: 22890851
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoelectrochemical decomposition of water into H2 and O2 on porous BiVO4 thin-film electrodes under visible light and significant effect of Ag ion treatment.
    Sayama K; Nomura A; Arai T; Sugita T; Abe R; Yanagida M; Oi T; Iwasaki Y; Abe Y; Sugihara H
    J Phys Chem B; 2006 Jun; 110(23):11352-60. PubMed ID: 16771406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Progress in the Surface Modification of Photoelectrodes toward Efficient and Stable Overall Water Splitting.
    Kaneko H; Minegishi T; Domen K
    Chemistry; 2018 Apr; 24(22):5697-5706. PubMed ID: 29057534
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hematite/Si nanowire dual-absorber system for photoelectrochemical water splitting at low applied potentials.
    Mayer MT; Du C; Wang D
    J Am Chem Soc; 2012 Aug; 134(30):12406-9. PubMed ID: 22800199
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mn-doped GaN as photoelectrodes for the photoelectrolysis of water under visible light.
    Liu SY; Sheu JK; Lin YC; Tu SJ; Huang FW; Lee ML; Lai WC
    Opt Express; 2012 Sep; 20 Suppl 5():A678-83. PubMed ID: 23037534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of narrow-gap TiO2: a passivated codoping approach for enhanced photoelectrochemical activity.
    Gai Y; Li J; Li SS; Xia JB; Wei SH
    Phys Rev Lett; 2009 Jan; 102(3):036402. PubMed ID: 19257373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. First principles scheme to evaluate band edge positions in potential transition metal oxide photocatalysts and photoelectrodes.
    Toroker MC; Kanan DK; Alidoust N; Isseroff LY; Liao P; Carter EA
    Phys Chem Chem Phys; 2011 Oct; 13(37):16644-54. PubMed ID: 21853210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoelectrochemical properties of a dinitrogen-fixing iron titanate thin film.
    Rusina O; Macyk W; Kisch H
    J Phys Chem B; 2005 Jun; 109(21):10858-62. PubMed ID: 16852321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced photoelectrochemical stability of GaN photoelectrodes by Al
    Kim H; Bae H; Bang SW; Kim S; Lee SH; Ryu SW; Ha JS
    Opt Express; 2019 Feb; 27(4):A206-A215. PubMed ID: 30876136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phosphonic Acid Modification of GaInP2 Photocathodes Toward Unbiased Photoelectrochemical Water Splitting.
    MacLeod BA; Steirer KX; Young JL; Koldemir U; Sellinger A; Turner JA; Deutsch TG; Olson DC
    ACS Appl Mater Interfaces; 2015 Jun; 7(21):11346-50. PubMed ID: 25970795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic Competition between Water-Splitting and Photocorrosion Reactions in Photoelectrochemical Devices.
    Nandjou F; Haussener S
    ChemSusChem; 2019 May; 12(9):1984-1994. PubMed ID: 30644167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of III-V nitride alloy electronic structure: the localized to delocalized transition.
    Kent PR; Zunger A
    Phys Rev Lett; 2001 Mar; 86(12):2613-6. PubMed ID: 11289993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visible light driven overall water splitting using cocatalyst/BiVO4 photoanode with minimized bias.
    Ding C; Shi J; Wang D; Wang Z; Wang N; Liu G; Xiong F; Li C
    Phys Chem Chem Phys; 2013 Apr; 15(13):4589-95. PubMed ID: 23423143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A nitride based polarization-engineered photocathode for water splitting without a p-type semiconductor.
    Nakamura A; Fujii K; Sugiyama M; Nakano Y
    Phys Chem Chem Phys; 2014 Aug; 16(29):15326-30. PubMed ID: 24942671
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Growth of p-type hematite by atomic layer deposition and its utilization for improved solar water splitting.
    Lin Y; Xu Y; Mayer MT; Simpson ZI; McMahon G; Zhou S; Wang D
    J Am Chem Soc; 2012 Mar; 134(12):5508-11. PubMed ID: 22397372
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nano-architecture and material designs for water splitting photoelectrodes.
    Chen HM; Chen CK; Liu RS; Zhang L; Zhang J; Wilkinson DP
    Chem Soc Rev; 2012 Sep; 41(17):5654-71. PubMed ID: 22763382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Density Functional Theory Calculation of the Band Alignment of (101̅0) In(x)Ga(1-x)N/Water Interfaces.
    Meng AC; Cheng J; Sprik M
    J Phys Chem B; 2016 Mar; 120(8):1928-39. PubMed ID: 26829439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.