These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 17165975)

  • 21. New aspects of carrier multiplication in semiconductor nanocrystals.
    McGuire JA; Joo J; Pietryga JM; Schaller RD; Klimov VI
    Acc Chem Res; 2008 Dec; 41(12):1810-9. PubMed ID: 19006342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-Crystal Semiconductors with Narrow Band Gaps for Solar Water Splitting.
    Wang T; Gong J
    Angew Chem Int Ed Engl; 2015 Sep; 54(37):10718-32. PubMed ID: 26227831
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RuO2-loaded beta-Ge3N4 as a non-oxide photocatalyst for overall water splitting.
    Sato J; Saito N; Yamada Y; Maeda K; Takata T; Kondo JN; Hara M; Kobayashi H; Domen K; Inoue Y
    J Am Chem Soc; 2005 Mar; 127(12):4150-1. PubMed ID: 15783179
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of multielemental catalysts based on decreasing the band gap of titania for enhanced visible light photocatalysis.
    Im JS; Yun SM; Lee YS
    J Colloid Interface Sci; 2009 Aug; 336(1):183-8. PubMed ID: 19447408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Insight into the band structure engineering of single-layer SnS2 with in-plane biaxial strain.
    Zhou W; Umezawa N
    Phys Chem Chem Phys; 2016 Mar; 18(11):7860-5. PubMed ID: 26912413
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electronically excited water aggregates and the adiabatic band gap of water.
    Cabral do Couto P; Costa Cabral BJ
    J Chem Phys; 2007 Jan; 126(1):014509. PubMed ID: 17212502
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoelectrochemical water splitting using dense and aligned TiO2 nanorod arrays.
    Wolcott A; Smith WA; Kuykendall TR; Zhao Y; Zhang JZ
    Small; 2009 Jan; 5(1):104-11. PubMed ID: 19040214
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting.
    Liu X; Wang F; Wang Q
    Phys Chem Chem Phys; 2012 Jun; 14(22):7894-911. PubMed ID: 22534756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. p-type CuRhO2 as a self-healing photoelectrode for water reduction under visible light.
    Gu J; Yan Y; Krizan JW; Gibson QD; Detweiler ZM; Cava RJ; Bocarsly AB
    J Am Chem Soc; 2014 Jan; 136(3):830-3. PubMed ID: 24404902
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The stabilities and electronic structures of single-layer bismuth oxyhalides for photocatalytic water splitting.
    Zhang X; Li B; Wang J; Yuan Y; Zhang Q; Gao Z; Liu LM; Chen L
    Phys Chem Chem Phys; 2014 Dec; 16(47):25854-61. PubMed ID: 25354143
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solar water oxidation by composite catalyst/alpha-Fe(2)O(3) photoanodes.
    Zhong DK; Sun J; Inumaru H; Gamelin DR
    J Am Chem Soc; 2009 May; 131(17):6086-7. PubMed ID: 19354283
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Water splitting on semiconductor catalysts under visible-light irradiation.
    Navarro Yerga RM; Alvarez Galván MC; del Valle F; Villoria de la Mano JA; Fierro JL
    ChemSusChem; 2009; 2(6):471-85. PubMed ID: 19536754
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Zinc Titanium Nitride Semiconductor toward Durable Photoelectrochemical Applications.
    Greenaway AL; Ke S; Culman T; Talley KR; Mangum JS; Heinselman KN; Kingsbury RS; Smaha RW; Gish MK; Miller EM; Persson KA; Gregoire JM; Bauers SR; Neaton JB; Tamboli AC; Zakutayev A
    J Am Chem Soc; 2022 Aug; 144(30):13673-13687. PubMed ID: 35857885
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electronic excitations in light absorbers for photoelectrochemical energy conversion: first principles calculations based on many body perturbation theory.
    Ping Y; Rocca D; Galli G
    Chem Soc Rev; 2013 Mar; 42(6):2437-69. PubMed ID: 23426559
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Template-free synthesis of BiVO4 nanostructures: I. Nanotubes with hexagonal cross sections by oriented attachment and their photocatalytic property for water splitting under visible light.
    Ren L; Jin L; Wang JB; Yang F; Qiu MQ; Yu Y
    Nanotechnology; 2009 Mar; 20(11):115603. PubMed ID: 19420443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris(8-hydroxyquinolate)aluminum) and their versatile applications for organic light-emitting diodes.
    Liao SH; Shiu JR; Liu SW; Yeh SJ; Chen YH; Chen CT; Chow TJ; Wu CI
    J Am Chem Soc; 2009 Jan; 131(2):763-77. PubMed ID: 19093863
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A visible light photocatalyst: effects of vanadium substitution on ETS-10.
    Marie Shough A; Lobo RF; Doren DJ
    Phys Chem Chem Phys; 2007 Oct; 9(37):5096-104. PubMed ID: 17878985
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High-throughput screening using porous photoelectrode for the development of visible-light-responsive semiconductors.
    Arai T; Konishi Y; Iwasaki Y; Sugihara H; Sayama K
    J Comb Chem; 2007; 9(4):574-81. PubMed ID: 17571904
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The electronic structure of the four nucleotide bases in DNA, of their stacks, and of their homopolynucleotides in the absence and presence of water.
    Ladik J; Bende A; Bogár F
    J Chem Phys; 2008 Mar; 128(10):105101. PubMed ID: 18345925
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energetic and electronic properties of X- (Si, Ge, Sn, Pb) doped TiO2 from first-principles.
    Long R; Dai Y; Meng G; Huang B
    Phys Chem Chem Phys; 2009 Oct; 11(37):8165-72. PubMed ID: 19756272
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.