BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 17165999)

  • 1. Analysis of photovoltage decay transients in dye-sensitized solar cells.
    Walker AB; Peter LM; Lobato K; Cameron PJ
    J Phys Chem B; 2006 Dec; 110(50):25504-7. PubMed ID: 17165999
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method.
    Bisquert J; Zaban A; Greenshtein M; Mora-Seró I
    J Am Chem Soc; 2004 Oct; 126(41):13550-9. PubMed ID: 15479112
    [TBL] [Abstract][Full Text] [Related]  

  • 3. How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?
    Cameron PJ; Peter LM
    J Phys Chem B; 2005 Apr; 109(15):7392-8. PubMed ID: 16851846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells.
    Bailes M; Cameron PJ; Lobato K; Peter LM
    J Phys Chem B; 2005 Aug; 109(32):15429-35. PubMed ID: 16852957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Sticky electrons" transport and interfacial transfer of electrons in the dye-sensitized solar cell.
    Peter L
    Acc Chem Res; 2009 Nov; 42(11):1839-47. PubMed ID: 19637905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation energy of electron transport in dye-sensitized TiO2 solar cells.
    Boschloo G; Hagfeldt A
    J Phys Chem B; 2005 Jun; 109(24):12093-8. PubMed ID: 16852492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells?
    Cameron PJ; Peter LM; Hore S
    J Phys Chem B; 2005 Jan; 109(2):930-6. PubMed ID: 16866461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of charge transport and recombination on the performance of dye-sensitized solar cells.
    Wang M; Chen P; Humphry-Baker R; Zakeeruddin SM; Grätzel M
    Chemphyschem; 2009 Jan; 10(1):290-9. PubMed ID: 19115326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron transport analysis for improvement of solid-state dye-sensitized solar cells using poly(3,4-ethylenedioxythiophene) as hole conductors.
    Fukuri N; Masaki N; Kitamura T; Wada Y; Yanagida S
    J Phys Chem B; 2006 Dec; 110(50):25251-8. PubMed ID: 17165969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells.
    Boschloo G; Hagfeldt A
    Acc Chem Res; 2009 Nov; 42(11):1819-26. PubMed ID: 19845388
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons.
    Jennings JR; Ghicov A; Peter LM; Schmuki P; Walker AB
    J Am Chem Soc; 2008 Oct; 130(40):13364-72. PubMed ID: 18774820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Observation of diffusion and tunneling recombination of dye-photoinjected electrons in ultrathin TiO2 layers by surface photovoltage transients.
    Mora-Seró I; Dittrich T; Belaidi A; Garcia-Belmonte G; Bisquert J
    J Phys Chem B; 2005 Aug; 109(31):14932-8. PubMed ID: 16852891
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measuring charge transport from transient photovoltage rise times. A new tool to investigate electron transport in nanoparticle films.
    O'Regan BC; Bakker K; Kroeze J; Smit H; Sommeling P; Durrant JR
    J Phys Chem B; 2006 Aug; 110(34):17155-60. PubMed ID: 16928011
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical model for charge transport and recombination in dye-sensitized solar cells.
    Anta JA; Casanueva F; Oskam G
    J Phys Chem B; 2006 Mar; 110(11):5372-8. PubMed ID: 16539471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of trap-state distribution and carrier transport in nanotubular and nanoparticulate TiO(2) electrodes for dye-sensitized solar cells.
    Mohammadpour R; Iraji Zad A; Hagfeldt A; Boschloo G
    Chemphyschem; 2010 Jul; 11(10):2140-5. PubMed ID: 20572254
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of low crystallinity TiO2 film with nanocrystalline anatase film for dye-sensitized solar cells.
    Tang X; Qian J; Wang Z; Wang H; Feng Q; Liu G
    J Colloid Interface Sci; 2009 Feb; 330(2):386-91. PubMed ID: 19036388
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mg(OOCCH3)2 interface modification after sensitization to improve performance in quasi-solid dye-sensitized solar cells.
    Gao R; Wang L; Ma B; Zhan C; Qiu Y
    Langmuir; 2010 Feb; 26(4):2460-5. PubMed ID: 19856906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical impedance spectroscopic analysis of dye-sensitized solar cells.
    Wang Q; Moser JE; Grätzel M
    J Phys Chem B; 2005 Aug; 109(31):14945-53. PubMed ID: 16852893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of solid-state dye-sensitized solar cells utilizing high absorption coefficient metal-free organic dyes.
    Howie WH; Claeyssens F; Miura H; Peter LM
    J Am Chem Soc; 2008 Jan; 130(4):1367-75. PubMed ID: 18177043
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpretation of apparent activation energies for electron transport in dye-sensitized nanocrystalline solar cells.
    Peter LM; Walker AB; Boschloo G; Hagfeldt A
    J Phys Chem B; 2006 Jul; 110(28):13694-9. PubMed ID: 16836312
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.