These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 17166006)

  • 1. Formation of orientation-ordered superlattices of magnetite magnetic nanocrystals from shape-segregated self-assemblies.
    Song Q; Ding Y; Wang ZL; Zhang ZJ
    J Phys Chem B; 2006 Dec; 110(50):25547-50. PubMed ID: 17166006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inorganic nanocrystal self-assembly via the inclusion interaction of beta-cyclodextrins: toward 3D spherical magnetite.
    Hou Y; Kondoh H; Shimojo M; Sako EO; Ozaki N; Kogure T; Ohta T
    J Phys Chem B; 2005 Mar; 109(11):4845-52. PubMed ID: 16863138
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supercritical fluid synthesis of magnetic hexagonal nanoplatelets of magnetite.
    Li Z; Godsell JF; O'Byrne JP; Petkov N; Morris MA; Roy S; Holmes JD
    J Am Chem Soc; 2010 Sep; 132(36):12540-1. PubMed ID: 20718484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices.
    Shevchenko EV; Talapin DV; Murray CB; O'Brien S
    J Am Chem Soc; 2006 Mar; 128(11):3620-37. PubMed ID: 16536535
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible solvent vapor-mediated phase changes in nanocrystal superlattices.
    Goodfellow BW; Korgel BA
    ACS Nano; 2011 Apr; 5(4):2419-24. PubMed ID: 21517119
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes.
    Jun YW; Choi JS; Cheon J
    Angew Chem Int Ed Engl; 2006 May; 45(21):3414-39. PubMed ID: 16642516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and characterization of highly branched nanostructures of magnetic nanoparticles.
    Chu Y; Hu J; Yang W; Wang C; Zhang JZ
    J Phys Chem B; 2006 Feb; 110(7):3135-9. PubMed ID: 16494320
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: temperature as the structure-directing factor.
    Bodnarchuk MI; Kovalenko MV; Heiss W; Talapin DV
    J Am Chem Soc; 2010 Sep; 132(34):11967-77. PubMed ID: 20701285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directing the self-assembly of nanocrystals beyond colloidal crystallization.
    Zhang H; Edwards EW; Wang D; Möhwald H
    Phys Chem Chem Phys; 2006 Jul; 8(28):3288-99. PubMed ID: 16835676
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Role of Ligand Packing Frustration in Body-Centered Cubic (bcc) Superlattices of Colloidal Nanocrystals.
    Goodfellow BW; Yu Y; Bosoy CA; Smilgies DM; Korgel BA
    J Phys Chem Lett; 2015 Jul; 6(13):2406-12. PubMed ID: 26266710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ordered structure rearrangements in heated gold nanocrystal superlattices.
    Goodfellow BW; Rasch MR; Hessel CM; Patel RN; Smilgies DM; Korgel BA
    Nano Lett; 2013; 13(11):5710-4. PubMed ID: 24131332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-temperature crystallization of nanocrystals into three-dimensional superlattices.
    Wu L; Willis JJ; McKay IS; Diroll BT; Qin J; Cargnello M; Tassone CJ
    Nature; 2017 Aug; 548(7666):197-201. PubMed ID: 28759888
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seeded growth of asymmetric binary nanocrystals made of a semiconductor TiO2 rodlike section and a magnetic gamma-Fe2O3 spherical domain.
    Buonsanti R; Grillo V; Carlino E; Giannini C; Curri ML; Innocenti C; Sangregorio C; Achterhold K; Parak FG; Agostiano A; Cozzoli PD
    J Am Chem Soc; 2006 Dec; 128(51):16953-70. PubMed ID: 17177447
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pushing nanocrystal synthesis toward nanomanufacturing.
    Skrabalak SE; Xia Y
    ACS Nano; 2009 Jan; 3(1):10-5. PubMed ID: 19206242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and characterization of highly ordered cobalt-magnetite nanocable arrays.
    Daly B; Arnold DC; Kulkarni JS; Kazakova O; Shaw MT; Nikitenko S; Erts D; Morris MA; Holmes JD
    Small; 2006 Nov; 2(11):1299-307. PubMed ID: 17192977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterned magnetic rings fabricated by dewetting of polymer-coated magnetite nanoparticles solution.
    An L; Li W; Nie Y; Xie B; Li Z; Zhang J; Yang B
    J Colloid Interface Sci; 2005 Aug; 288(2):503-7. PubMed ID: 15927618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid growth of magnetite nanoplates by ultrasonic irradiation at low temperature.
    Cheng JP; Ma R; Shi D; Liu F; Zhang XB
    Ultrason Sonochem; 2011 Sep; 18(5):1038-42. PubMed ID: 21256793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and characterization of ultrafine poly(vinylalcohol phosphate) coated magnetite nanoparticles.
    Mohapatra S; Pramanik N; Ghosh SK; Pramanik P
    J Nanosci Nanotechnol; 2006 Mar; 6(3):823-9. PubMed ID: 16573145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape and magnetic properties of single-crystalline hematite (alpha-Fe2O3) nanocrystals.
    Cao H; Wang G; Zhang L; Liang Y; Zhang S; Zhang X
    Chemphyschem; 2006 Sep; 7(9):1897-901. PubMed ID: 16881086
    [No Abstract]   [Full Text] [Related]  

  • 20. Fabrication of superparamagnetic magnetite/poly(styrene-co-12-acryloxy-9-octadecenoic acid) nanocomposite microspheres with controllable structure.
    Yang S; Liu H; Huang H; Zhang Z
    J Colloid Interface Sci; 2009 Oct; 338(2):584-90. PubMed ID: 19640548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.