These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

437 related articles for article (PubMed ID: 17166011)

  • 1. The functional equation truncation method for approximating slow invariant manifolds: a rapid method for computing intrinsic low-dimensional manifolds.
    Roussel MR; Tang T
    J Chem Phys; 2006 Dec; 125(21):214103. PubMed ID: 17166011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comment on "Identification of low order manifolds: validating the algorithm of Maas and Pope" [Chaos 9, 108-123 (1999)].
    Flockerzi D; Heineken W
    Chaos; 2006 Dec; 16(4):048101; author reply 048102. PubMed ID: 17199405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Approximation of slow attracting manifolds in chemical kinetics by trajectory-based optimization approaches.
    Reinhardt V; Winckler M; Lebiedz D
    J Phys Chem A; 2008 Feb; 112(8):1712-8. PubMed ID: 18247506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing a chemical master equation by invariant manifold methods.
    Roussel MR; Zhu R
    J Chem Phys; 2004 Nov; 121(18):8716-30. PubMed ID: 15527335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical method based on the lattice Boltzmann model for the Fisher equation.
    Yan G; Zhang J; Dong Y
    Chaos; 2008 Jun; 18(2):023131. PubMed ID: 18601497
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The invariant constrained equilibrium edge preimage curve method for the dimension reduction of chemical kinetics.
    Ren Z; Pope SB; Vladimirsky A; Guckenheimer JM
    J Chem Phys; 2006 Mar; 124(11):114111. PubMed ID: 16555878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Invariant manifolds of an autonomous ordinary differential equation from its generalized normal forms.
    Palacián J
    Chaos; 2003 Dec; 13(4):1188-204. PubMed ID: 14604410
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Slow manifold for a bimolecular association mechanism.
    Fraser SJ
    J Chem Phys; 2004 Feb; 120(7):3075-85. PubMed ID: 15268460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Invariant manifold methods for metabolic model reduction.
    Roussel MR; Fraser SJ
    Chaos; 2001 Mar; 11(1):196-206. PubMed ID: 12779453
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-dimensional slow invariant manifolds for spatially homogenous reactive systems.
    Al-Khateeb AN; Powers JM; Paolucci S; Sommese AJ; Diller JA; Hauenstein JD; Mengers JD
    J Chem Phys; 2009 Jul; 131(2):024118. PubMed ID: 19603981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spatial dynamics of steady flames 2. Low-dimensional manifolds and the role of transport processes.
    Davis MJ; Tomlin AS
    J Phys Chem A; 2008 Aug; 112(34):7784-805. PubMed ID: 18683912
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system.
    Desroches M; Krauskopf B; Osinga HM
    Chaos; 2008 Mar; 18(1):015107. PubMed ID: 18377088
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-dimensional manifolds in reaction-diffusion equations. 2. Numerical analysis and method development.
    Davis MJ
    J Phys Chem A; 2006 Apr; 110(16):5257-72. PubMed ID: 16623451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction of chemical reaction networks using quasi-integrals.
    Straube R; Flockerzi D; Müller SC; Hauser MJ
    J Phys Chem A; 2005 Jan; 109(3):441-50. PubMed ID: 16833364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of low order manifolds: Validating the algorithm of Maas and Pope.
    Rhodes C; Morari M; Wiggins S
    Chaos; 1999 Mar; 9(1):108-123. PubMed ID: 12779806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discretization of parametrizable signal manifolds.
    Vural E; Frossard P
    IEEE Trans Image Process; 2011 Dec; 20(12):3621-33. PubMed ID: 21606033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new theorem on higher order derivatives of Lyapunov functions.
    Meigoli V; Nikravesh SK
    ISA Trans; 2009 Apr; 48(2):173-9. PubMed ID: 19193370
    [TBL] [Abstract][Full Text] [Related]  

  • 18. One-dimensional transport equation models for sound energy propagation in long spaces: theory.
    Jing Y; Larsen EW; Xiang N
    J Acoust Soc Am; 2010 Apr; 127(4):2312-22. PubMed ID: 20370013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Slow manifold structure in explosive kinetics. 2. Extension to higher dimensional systems.
    Giona M; Adrover A; Creta F; Valorani M
    J Phys Chem A; 2006 Dec; 110(50):13463-74. PubMed ID: 17165871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Slow manifold structure in explosive kinetics. 1. Bifurcations of points-at-infinity in prototypical models.
    Creta F; Adrover A; Cerbelli S; Valorani M; Giona M
    J Phys Chem A; 2006 Dec; 110(50):13447-62. PubMed ID: 17165870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.