These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Homogeneous nucleation and growth of melt in copper. Zheng L; An Q; Xie Y; Sun Z; Luo SN J Chem Phys; 2007 Oct; 127(16):164503. PubMed ID: 17979356 [TBL] [Abstract][Full Text] [Related]
8. Homogeneous nucleation and growth in supersaturated zinc vapor investigated by molecular dynamics simulation. Römer F; Kraska T J Chem Phys; 2007 Dec; 127(23):234509. PubMed ID: 18154402 [TBL] [Abstract][Full Text] [Related]
9. Tests of the homogeneous nucleation theory with molecular-dynamics simulations. I. Lennard-Jones molecules. Tanaka KK; Kawamura K; Tanaka H; Nakazawa K J Chem Phys; 2005 May; 122(18):184514. PubMed ID: 15918736 [TBL] [Abstract][Full Text] [Related]
10. An aggregation-volume-bias Monte Carlo investigation on the condensation of a Lennard-Jones vapor below the triple point and crystal nucleation in cluster systems: an in-depth evaluation of the classical nucleation theory. Chen B; Kim H; Keasler SJ; Nellas RB J Phys Chem B; 2008 Apr; 112(13):4067-78. PubMed ID: 18335920 [TBL] [Abstract][Full Text] [Related]
11. Nucleation simulations using the fluid dynamics software FLUENT with the fine particle model FPM. Herrmann E; Lihavainen H; Hyvärinen AP; Riipinen I; Wilck M; Stratmann F; Kulmala M J Phys Chem A; 2006 Nov; 110(45):12448-55. PubMed ID: 17091949 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics simulations of nucleation from vapor to solid composed of Lennard-Jones molecules. Tanaka KK; Tanaka H; Yamamoto T; Kawamura K J Chem Phys; 2011 May; 134(20):204313. PubMed ID: 21639446 [TBL] [Abstract][Full Text] [Related]
13. Equilibrium sizes and formation energies of small and large Lennard-Jones clusters from molecular dynamics: a consistent comparison to Monte Carlo simulations and density functional theories. Julin J; Napari I; Merikanto J; Vehkamäki H J Chem Phys; 2008 Dec; 129(23):234506. PubMed ID: 19102537 [TBL] [Abstract][Full Text] [Related]
14. Two-step vapor-crystal nucleation close below triple point. van Meel JA; Page AJ; Sear RP; Frenkel D J Chem Phys; 2008 Nov; 129(20):204505. PubMed ID: 19045871 [TBL] [Abstract][Full Text] [Related]
15. Nucleation and cavitation of spherical, cylindrical, and slablike droplets and bubbles in small systems. MacDowell LG; Shen VK; Errington JR J Chem Phys; 2006 Jul; 125(3):34705. PubMed ID: 16863371 [TBL] [Abstract][Full Text] [Related]
16. Argon nucleation: bringing together theory, simulations, and experiment. Kalikmanov VI; Wölk J; Kraska T J Chem Phys; 2008 Mar; 128(12):124506. PubMed ID: 18376942 [TBL] [Abstract][Full Text] [Related]
17. Molecular dynamics simulations of cluster nucleation during inert gas condensation. Krasnochtchekov P; Averback RS J Chem Phys; 2005 Jan; 122(4):44319. PubMed ID: 15740260 [TBL] [Abstract][Full Text] [Related]
18. Complete thermodynamically consistent kinetic model of particle nucleation and growth: numerical study of the applicability of the classical theory of homogeneous nucleation. Chesnokov EN; Krasnoperov LN J Chem Phys; 2007 Apr; 126(14):144504. PubMed ID: 17444720 [TBL] [Abstract][Full Text] [Related]
19. Melting of defective Cu with stacking faults. Han LB; An Q; Fu RS; Zheng L; Luo SN J Chem Phys; 2009 Jan; 130(2):024508. PubMed ID: 19154039 [TBL] [Abstract][Full Text] [Related]
20. Crossover from nucleation to spinodal decomposition in a condensing vapor. Wedekind J; Chkonia G; Wölk J; Strey R; Reguera D J Chem Phys; 2009 Sep; 131(11):114506. PubMed ID: 19778128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]