BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 17166057)

  • 1. Genomic selective constraints in murid noncoding DNA.
    Gaffney DJ; Keightley PD
    PLoS Genet; 2006 Nov; 2(11):e204. PubMed ID: 17166057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributions of selectively constrained sites and deleterious mutation rates in the hominid and murid genomes.
    Eory L; Halligan DL; Keightley PD
    Mol Biol Evol; 2010 Jan; 27(1):177-92. PubMed ID: 19759235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional constraints and frequency of deleterious mutations in noncoding DNA of rodents.
    Keightley PD; Gaffney DJ
    Proc Natl Acad Sci U S A; 2003 Nov; 100(23):13402-6. PubMed ID: 14597721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Patterns of evolutionary constraints in intronic and intergenic DNA of Drosophila.
    Halligan DL; Eyre-Walker A; Andolfatto P; Keightley PD
    Genome Res; 2004 Feb; 14(2):273-9. PubMed ID: 14762063
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences.
    Bergman CM; Kreitman M
    Genome Res; 2001 Aug; 11(8):1335-45. PubMed ID: 11483574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive and negative selection in murine ultraconserved noncoding elements.
    Halligan DL; Oliver F; Guthrie J; Stemshorn KC; Harr B; Keightley PD
    Mol Biol Evol; 2011 Sep; 28(9):2651-60. PubMed ID: 21478460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison.
    Halligan DL; Keightley PD
    Genome Res; 2006 Jul; 16(7):875-84. PubMed ID: 16751341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The compositional evolution of the murid genome.
    Smith NG; Eyre-Walker A
    J Mol Evol; 2002 Aug; 55(2):197-201. PubMed ID: 12107595
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcription-related mutations and GC content drive variation in nucleotide substitution rates across the genomes of Arabidopsis thaliana and Arabidopsis lyrata.
    DeRose-Wilson LJ; Gaut BS
    BMC Evol Biol; 2007 Apr; 7():66. PubMed ID: 17451608
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inference of mutation parameters and selective constraint in mammalian coding sequences by approximate Bayesian computation.
    Keightley PD; Eöry L; Halligan DL; Kirkpatrick M
    Genetics; 2011 Apr; 187(4):1153-61. PubMed ID: 21288873
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contributions of protein-coding and regulatory change to adaptive molecular evolution in murid rodents.
    Halligan DL; Kousathanas A; Ness RW; Harr B; Eöry L; Keane TM; Adams DJ; Keightley PD
    PLoS Genet; 2013; 9(12):e1003995. PubMed ID: 24339797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of noncoding and silent coding sites in the Plasmodium falciparum and Plasmodium reichenowi genomes.
    Neafsey DE; Hartl DL; Berriman M
    Mol Biol Evol; 2005 Jul; 22(7):1621-6. PubMed ID: 15858207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A systematic search for new mammalian noncoding RNAs indicates little conserved intergenic transcription.
    Babak T; Blencowe BJ; Hughes TR
    BMC Genomics; 2005 Aug; 6():104. PubMed ID: 16083503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for widespread degradation of gene control regions in hominid genomes.
    Keightley PD; Lercher MJ; Eyre-Walker A
    PLoS Biol; 2005 Feb; 3(2):e42. PubMed ID: 15678168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for turnover of functional noncoding DNA in mammalian genome evolution.
    Smith NG; Brandström M; Ellegren H
    Genomics; 2004 Nov; 84(5):806-13. PubMed ID: 15475259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive evolution of non-coding DNA in Drosophila.
    Andolfatto P
    Nature; 2005 Oct; 437(7062):1149-52. PubMed ID: 16237443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating the rate of adaptive molecular evolution in the presence of slightly deleterious mutations and population size change.
    Eyre-Walker A; Keightley PD
    Mol Biol Evol; 2009 Sep; 26(9):2097-108. PubMed ID: 19535738
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of human chromosome 21 conserved nongenic sequences (CNGs) with the mouse and dog genomes shows that their selective constraint is independent of their genic environment.
    Dermitzakis ET; Kirkness E; Schwarz S; Birney E; Reymond A; Antonarakis SE
    Genome Res; 2004 May; 14(5):852-9. PubMed ID: 15078857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessing substitution variation across sites in grass chloroplast DNA.
    Zheng T; Ichiba T; Morton BR
    J Mol Evol; 2007 Jun; 64(6):605-13. PubMed ID: 17541677
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective constraint in intergenic regions of human and mouse genomes.
    Shabalina SA; Ogurtsov AY; Kondrashov VA; Kondrashov AS
    Trends Genet; 2001 Jul; 17(7):373-6. PubMed ID: 11418197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.