These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
402 related articles for article (PubMed ID: 17166504)
1. Physiologically based boundary conditions in finite element modelling. Speirs AD; Heller MO; Duda GN; Taylor WR J Biomech; 2007; 40(10):2318-23. PubMed ID: 17166504 [TBL] [Abstract][Full Text] [Related]
2. [Noncemented total hip arthroplasty: influence of extramedullary parameters on initial implant stability and on bone-implant interface stresses]. Ramaniraka NA; Rakotomanana LR; Rubin PJ; Leyvraz P Rev Chir Orthop Reparatrice Appar Mot; 2000 Oct; 86(6):590-7. PubMed ID: 11060433 [TBL] [Abstract][Full Text] [Related]
3. Determination of muscle loading at the hip joint for use in pre-clinical testing. Heller MO; Bergmann G; Kassi JP; Claes L; Haas NP; Duda GN J Biomech; 2005 May; 38(5):1155-63. PubMed ID: 15797596 [TBL] [Abstract][Full Text] [Related]
4. The femur as a musculo-skeletal construct: a free boundary condition modelling approach. Phillips AT Med Eng Phys; 2009 Jul; 31(6):673-80. PubMed ID: 19201245 [TBL] [Abstract][Full Text] [Related]
5. Principles of determination and verification of muscle forces in the human musculoskeletal system: Muscle forces to minimise bending stress. Sverdlova NS; Witzel U J Biomech; 2010 Feb; 43(3):387-96. PubMed ID: 19880120 [TBL] [Abstract][Full Text] [Related]
6. The effect of muscle loading on the simulation of bone remodelling in the proximal femur. Bitsakos C; Kerner J; Fisher I; Amis AA J Biomech; 2005 Jan; 38(1):133-9. PubMed ID: 15519348 [TBL] [Abstract][Full Text] [Related]
7. Strain distribution within the human femur due to physiological and simplified loading: finite element analysis using the muscle standardized femur model. Polgár K; Gill HS; Viceconti M; Murray DW; O'Connor JJ Proc Inst Mech Eng H; 2003; 217(3):173-89. PubMed ID: 12807158 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous prediction of muscle and contact forces in the knee during gait. Lin YC; Walter JP; Banks SA; Pandy MG; Fregly BJ J Biomech; 2010 Mar; 43(5):945-52. PubMed ID: 19962703 [TBL] [Abstract][Full Text] [Related]
9. Stair climbing is more critical than walking in pre-clinical assessment of primary stability in cementless THA in vitro. Kassi JP; Heller MO; Stoeckle U; Perka C; Duda GN J Biomech; 2005 May; 38(5):1143-54. PubMed ID: 15797595 [TBL] [Abstract][Full Text] [Related]
10. Relation between subject-specific hip joint loading, stress distribution in the proximal femur and bone mineral density changes after total hip replacement. Jonkers I; Sauwen N; Lenaerts G; Mulier M; Van der Perre G; Jaecques S J Biomech; 2008 Dec; 41(16):3405-13. PubMed ID: 19019372 [TBL] [Abstract][Full Text] [Related]
11. Bone remodelling inside a cemented resurfaced femoral head. Gupta S; New AM; Taylor M Clin Biomech (Bristol); 2006 Jul; 21(6):594-602. PubMed ID: 16542761 [TBL] [Abstract][Full Text] [Related]
12. Finite element analysis of the femur during stance phase of gait based on musculoskeletal model simulation. Seo JW; Kang DW; Kim JY; Yang ST; Kim DH; Choi JS; Tack GR Biomed Mater Eng; 2014; 24(6):2485-93. PubMed ID: 25226949 [TBL] [Abstract][Full Text] [Related]
13. Internal forces and moments in the femur of the rat during gait. Wehner T; Wolfram U; Henzler T; Niemeyer F; Claes L; Simon U J Biomech; 2010 Sep; 43(13):2473-9. PubMed ID: 20566196 [TBL] [Abstract][Full Text] [Related]
14. The biomechanics of human femurs in axial and torsional loading: comparison of finite element analysis, human cadaveric femurs, and synthetic femurs. Papini M; Zdero R; Schemitsch EH; Zalzal P J Biomech Eng; 2007 Feb; 129(1):12-9. PubMed ID: 17227093 [TBL] [Abstract][Full Text] [Related]
15. Comparison of global and joint-to-joint methods for estimating the hip joint load and the muscle forces during walking. Fraysse F; Dumas R; Cheze L; Wang X J Biomech; 2009 Oct; 42(14):2357-62. PubMed ID: 19699479 [TBL] [Abstract][Full Text] [Related]
16. Comparison of trunk muscle forces and spinal loads estimated by two biomechanical models. Arjmand N; Gagnon D; Plamondon A; Shirazi-Adl A; Larivière C Clin Biomech (Bristol); 2009 Aug; 24(7):533-41. PubMed ID: 19493597 [TBL] [Abstract][Full Text] [Related]
17. A fracture risk assessment model of the femur in children with osteogenesis imperfecta (OI) during gait. Fritz JM; Guan Y; Wang M; Smith PA; Harris GF Med Eng Phys; 2009 Nov; 31(9):1043-8. PubMed ID: 19683956 [TBL] [Abstract][Full Text] [Related]
18. THA loading arising from increased femoral anteversion and offset may lead to critical cement stresses. Kleemann RU; Heller MO; Stoeckle U; Taylor WR; Duda GN J Orthop Res; 2003 Sep; 21(5):767-74. PubMed ID: 12919861 [TBL] [Abstract][Full Text] [Related]
19. Primary stability of uncemented femoral resurfacing implants for varying interface parameters and material formulations during walking and stair climbing. Rothstock S; Uhlenbrock A; Bishop N; Morlock M J Biomech; 2010 Feb; 43(3):521-6. PubMed ID: 19913227 [TBL] [Abstract][Full Text] [Related]
20. Influence of changes in stem positioning on femoral loading after THR using a short-stemmed hip implant. Speirs AD; Heller MO; Taylor WR; Duda GN; Perka C Clin Biomech (Bristol); 2007 May; 22(4):431-9. PubMed ID: 17275151 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]