These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 17166659)

  • 21. Mathematical modeling of MSW combustion and SNCR in a full-scale municipal incinerator and effects of grate speed and oxygen-enriched atmospheres on operating conditions.
    Liang Z; Ma X
    Waste Manag; 2010 Dec; 30(12):2520-9. PubMed ID: 20627508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pyrolysis of mixtures of sewage sludge and manure: a comparison of the results obtained in the laboratory (semi-pilot) and in a pilot plant.
    Sánchez ME; Martínez O; Gómez X; Morán A
    Waste Manag; 2007; 27(10):1328-34. PubMed ID: 16996726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Standards of performance for new stationary sources and emission guidelines for existing sources: hospital/medical/infectious waste incinerators--EPA. Final rule.
    Fed Regist; 1997 Sep; 62(178):48348-91. PubMed ID: 10173799
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gaseous emissions from the combustion of a waste mixture containing a high concentration of N2O.
    Dong C; Yang Y; Zhang J; Lu X
    Waste Manag; 2009 Jan; 29(1):272-6. PubMed ID: 18439813
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental investigation of wood combustion in a fixed bed with hot air.
    Markovic M; Bramer EA; Brem G
    Waste Manag; 2014 Jan; 34(1):49-62. PubMed ID: 24125795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanomaterial disposal by incineration.
    Holder AL; Vejerano EP; Zhou X; Marr LC
    Environ Sci Process Impacts; 2013 Sep; 15(9):1652-64. PubMed ID: 23880913
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combustion characteristics of simulated gas fuel in a 30 kg/h scale pyrolysis-melting incinerator.
    Shin D; Yu T; Yang W; Jeon B; Park S; Hwang J
    Waste Manag; 2008 Nov; 28(11):2422-7. PubMed ID: 18325753
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Medical waste incinerator constructed with locally produced materials: experience during the immunization campaign 2002 against measles in Douala, Cameroon].
    Guévart E; Bita Fouda A; Mbous JA; Makoutode M; Bessaoud K
    Med Trop (Mars); 2009 Jun; 69(3):245-50. PubMed ID: 19702145
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hazardous waste incinerators under waste uncertainty: balancing and throughput maximization via heat recuperation.
    Tsiliyannis CA
    Waste Manag; 2013 Sep; 33(9):1800-24. PubMed ID: 23756352
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Report: Atmospheric pollutants discharged from municipal solid waste incineration and gasification-melting facilities in Japan.
    Inoue K; Yasuda K; Kawamoto K
    Waste Manag Res; 2009 Sep; 27(6):617-22. PubMed ID: 19470540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effective incineration technology with a new-type rotary waste incinerator.
    Chen LQ; Zhu JZ; Cai MZ; Xie XY
    J Environ Sci (China); 2003 Nov; 15(6):768-72. PubMed ID: 14758894
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Minimizing dioxin emissions from integrated MSW thermal treatment.
    Cheung WH; Lee VK; McKay G
    Environ Sci Technol; 2007 Mar; 41(6):2001-7. PubMed ID: 17410797
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Pyrolysis of tyres. Influence of the final temperature of the process on emissions and the calorific value of the products recovered.
    Díez C; Martínez O; Calvo LF; Cara J; Morán A
    Waste Manag; 2004; 24(5):463-9. PubMed ID: 15120430
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of medical waste incinerators in Alexandria.
    Labib OA; Hussein AH; El-Shall WI; Zakaria A; Mohamed MG
    J Egypt Public Health Assoc; 2005; 80(3-4):389-404. PubMed ID: 16900615
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Co-combustion performance of poultry wastes and natural gas in the advanced Swirling Fluidized Bed Combustor (SFBC).
    Zhu S; Lee SW
    Waste Manag; 2005; 25(5):511-8. PubMed ID: 15925760
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan.
    Chang CY; Wang CF; Mui DT; Cheng MT; Chiang HL
    J Hazard Mater; 2009 Jun; 165(1-3):766-73. PubMed ID: 19046804
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Dioxin emission factors for the incineration of different medical waste types.
    Alvim Ferraz MC; Afonso SA
    Arch Environ Contam Toxicol; 2003 May; 44(4):460-6. PubMed ID: 12712276
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Oxygen-enriched air for co-incineration of organic sludges with municipal solid waste: a pilot plant experiment.
    Chin S; Jurng J; Lee JH; Hur JH
    Waste Manag; 2008 Dec; 28(12):2684-9. PubMed ID: 18325752
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Health risk assessment of air emissions from a municipal solid waste incineration plant--a case study.
    Cangialosi F; Intini G; Liberti L; Notarnicola M; Stellacci P
    Waste Manag; 2008; 28(5):885-95. PubMed ID: 17611096
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combustion characteristics of paper mill sludge in a lab-scale combustor with internally cycloned circulating fluidized bed.
    Shin D; Jang S; Hwang J
    Waste Manag; 2005; 25(7):680-5. PubMed ID: 16009301
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.