These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

304 related articles for article (PubMed ID: 17167077)

  • 1. The linear computational algorithm of cerebellar Purkinje cells.
    Walter JT; Khodakhah K
    J Neurosci; 2006 Dec; 26(50):12861-72. PubMed ID: 17167077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The advantages of linear information processing for cerebellar computation.
    Walter JT; Khodakhah K
    Proc Natl Acad Sci U S A; 2009 Mar; 106(11):4471-6. PubMed ID: 19234116
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synaptic shunting by a baseline of synaptic conductances modulates responses to inhibitory input volleys in cerebellar Purkinje cells.
    Kreiner L; Jaeger D
    Cerebellum; 2004; 3(2):112-25. PubMed ID: 15233579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Different responses of rat cerebellar Purkinje cells and Golgi cells evoked by widespread convergent sensory inputs.
    Holtzman T; Rajapaksa T; Mostofi A; Edgley SA
    J Physiol; 2006 Jul; 574(Pt 2):491-507. PubMed ID: 16709640
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synaptic currents evoked in Purkinje cells by stimulating individual granule cells.
    Barbour B
    Neuron; 1993 Oct; 11(4):759-69. PubMed ID: 8398158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of quanta in cerebellar granule cells during sensory processing.
    Chadderton P; Margrie TW; Häusser M
    Nature; 2004 Apr; 428(6985):856-60. PubMed ID: 15103377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-Term Plasticity Combines with Excitation-Inhibition Balance to Expand Cerebellar Purkinje Cell Dynamic Range.
    Grangeray-Vilmint A; Valera AM; Kumar A; Isope P
    J Neurosci; 2018 May; 38(22):5153-5167. PubMed ID: 29720550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of unitary granule cell-->Purkinje cell synapses in adult rat cerebellar slices.
    Isope P; Barbour B
    J Neurosci; 2002 Nov; 22(22):9668-78. PubMed ID: 12427822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synaptic control of spiking in cerebellar Purkinje cells: dynamic current clamp based on model conductances.
    Jaeger D; Bower JM
    J Neurosci; 1999 Jul; 19(14):6090-101. PubMed ID: 10407045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Passive spatial and temporal integration of excitatory synaptic inputs in cerebellar Purkinje cells of young rats.
    Heck D; Borst A; Antkowiak B
    Neurosci Lett; 2003 Apr; 341(1):79-83. PubMed ID: 12676348
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synaptic integration in a model of cerebellar granule cells.
    Gabbiani F; Midtgaard J; Knöpfel T
    J Neurophysiol; 1994 Aug; 72(2):999-1009. PubMed ID: 7527078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An active membrane model of the cerebellar Purkinje cell II. Simulation of synaptic responses.
    De Schutter E; Bower JM
    J Neurophysiol; 1994 Jan; 71(1):401-19. PubMed ID: 8158238
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temporal firing patterns of Purkinje cells in the cerebellar ventral paraflocculus during ocular following responses in monkeys II. Complex spikes.
    Kobayashi Y; Kawano K; Takemura A; Inoue Y; Kitama T; Gomi H; Kawato M
    J Neurophysiol; 1998 Aug; 80(2):832-48. PubMed ID: 9705472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determinants of rebound burst responses in rat cerebellar nuclear neurons to physiological stimuli.
    Dykstra S; Engbers JD; Bartoletti TM; Turner RW
    J Physiol; 2016 Feb; 594(4):985-1003. PubMed ID: 26662168
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prolonged responses in rat cerebellar Purkinje cells following activation of the granule cell layer: an intracellular in vitro and in vivo investigation.
    Jaeger D; Bower JM
    Exp Brain Res; 1994; 100(2):200-14. PubMed ID: 7813659
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reliable control of spike rate and spike timing by rapid input transients in cerebellar stellate cells.
    Suter KJ; Jaeger D
    Neuroscience; 2004; 124(2):305-17. PubMed ID: 14980381
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High frequency burst firing of granule cells ensures transmission at the parallel fiber to purkinje cell synapse at the cost of temporal coding.
    van Beugen BJ; Gao Z; Boele HJ; Hoebeek F; De Zeeuw CI
    Front Neural Circuits; 2013; 7():95. PubMed ID: 23734102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Correlations between purkinje cell single-unit activity and simultaneously recorded field potentials in the immediately underlying granule cell layer.
    Lu H; Hartmann MJ; Bower JM
    J Neurophysiol; 2005 Sep; 94(3):1849-60. PubMed ID: 15928051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid development of Purkinje cell excitability, functional cerebellar circuit, and afferent sensory input to cerebellum in zebrafish.
    Hsieh JY; Ulrich B; Issa FA; Wan J; Papazian DM
    Front Neural Circuits; 2014; 8():147. PubMed ID: 25565973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The cerebellum linearly encodes whisker position during voluntary movement.
    Chen S; Augustine GJ; Chadderton P
    Elife; 2016 Jan; 5():e10509. PubMed ID: 26780828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.