These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 17167085)

  • 21. Tonic and synaptically evoked presynaptic inhibition of sensory input to the rat olfactory bulb via GABA(B) heteroreceptors.
    Aroniadou-Anderjaska V; Zhou FM; Priest CA; Ennis M; Shipley MT
    J Neurophysiol; 2000 Sep; 84(3):1194-203. PubMed ID: 10979995
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dopamine receptor subtypes modulate olfactory bulb gamma-aminobutyric acid type A receptors.
    Brünig I; Sommer M; Hatt H; Bormann J
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):2456-60. PubMed ID: 10051664
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Shootin1b Mediates a Mechanical Clutch to Produce Force for Neuronal Migration.
    Minegishi T; Uesugi Y; Kaneko N; Yoshida W; Sawamoto K; Inagaki N
    Cell Rep; 2018 Oct; 25(3):624-639.e6. PubMed ID: 30332643
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Postnatal development of dendritic spines on olfactory bulb granule cells in rats.
    Matsutani S; Yamamoto N
    J Comp Neurol; 2004 Jun; 473(4):553-61. PubMed ID: 15116390
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Activation of interneurons at the stratum oriens/alveus border suppresses excitatory transmission to apical dendrites in the CA1 area of the mouse hippocampus.
    Yanovsky Y; Sergeeva OA; Freund TF; Haas HL
    Neuroscience; 1997 Mar; 77(1):87-96. PubMed ID: 9044377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. mTOR kinase is needed for the development and stabilization of dendritic arbors in newly born olfactory bulb neurons.
    Skalecka A; Liszewska E; Bilinski R; Gkogkas C; Khoutorsky A; Malik AR; Sonenberg N; Jaworski J
    Dev Neurobiol; 2016 Dec; 76(12):1308-1327. PubMed ID: 27008592
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of a metabotropic glutamate receptor in synaptic modulation in the accessory olfactory bulb.
    Hayashi Y; Momiyama A; Takahashi T; Ohishi H; Ogawa-Meguro R; Shigemoto R; Mizuno N; Nakanishi S
    Nature; 1993 Dec; 366(6456):687-90. PubMed ID: 7903116
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distribution of immunoreactivity for gamma-aminobutyric acid in the salamander olfactory bulb.
    Hamilton KA
    J Comp Neurol; 1992 May; 319(4):606-14. PubMed ID: 1619046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Postnatal development of GABAergic signalling in the rat lateral geniculate nucleus: presynaptic dendritic mechanisms.
    Perreault MC; Qin Y; Heggelund P; Zhu JJ
    J Physiol; 2003 Jan; 546(Pt 1):137-48. PubMed ID: 12509484
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Direct and glia-mediated effects of GABA on development of central olfactory neurons.
    Mallory HS; Gibson NJ; Hayashi JH; Nighorn AJ; Oland LA
    Neuron Glia Biol; 2011 May; 7(2-4):143-61. PubMed ID: 22874585
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LIS1-dependent retrograde translocation of excitatory synapses in developing interneuron dendrites.
    Kawabata I; Kashiwagi Y; Obashi K; Ohkura M; Nakai J; Wynshaw-Boris A; Yanagawa Y; Okabe S
    Nat Commun; 2012 Mar; 3():722. PubMed ID: 22395613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Signaling between periglomerular cells reveals a bimodal role for GABA in modulating glomerular microcircuitry in the olfactory bulb.
    Parsa PV; D'Souza RD; Vijayaraghavan S
    Proc Natl Acad Sci U S A; 2015 Jul; 112(30):9478-83. PubMed ID: 26170298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recruitment of GABAergic inhibition and synchronization of inhibitory interneurons in rat neocortex.
    Benardo LS
    J Neurophysiol; 1997 Jun; 77(6):3134-44. PubMed ID: 9212263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dendritic processing within olfactory bulb circuits.
    Schoppa NE; Urban NN
    Trends Neurosci; 2003 Sep; 26(9):501-6. PubMed ID: 12948662
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence that GABA augmentation of norepinephrine release is mediated by interneurons.
    Fiber JM; Etgen AM
    Brain Res; 1998 Apr; 790(1-2):329-33. PubMed ID: 9593975
    [TBL] [Abstract][Full Text] [Related]  

  • 36. GABAergic phenotype of periglomerular cells in the rodent olfactory bulb.
    Panzanelli P; Fritschy JM; Yanagawa Y; Obata K; Sassoè-Pognetto M
    J Comp Neurol; 2007 Jun; 502(6):990-1002. PubMed ID: 17444497
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Putrescine as an important source of GABA in the postnatal rat subventricular zone.
    Sequerra EB; Gardino P; Hedin-Pereira C; de Mello FG
    Neuroscience; 2007 May; 146(2):489-93. PubMed ID: 17395389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. alpha7 nicotinic acetylcholine receptors on GABAergic interneurons evoke dendritic and somatic inhibition of hippocampal neurons.
    Buhler AV; Dunwiddie TV
    J Neurophysiol; 2002 Jan; 87(1):548-57. PubMed ID: 11784770
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intrabulbar associational system in the rat olfactory bulb comprises cholecystokinin-containing tufted cells that synapse onto the dendrites of GABAergic granule cells.
    Liu WL; Shipley MT
    J Comp Neurol; 1994 Aug; 346(4):541-58. PubMed ID: 7983243
    [TBL] [Abstract][Full Text] [Related]  

  • 40. GABAA-mediated IPSCs in piriform cortex have fast and slow components with different properties and locations on pyramidal cells.
    Kapur A; Pearce RA; Lytton WW; Haberly LB
    J Neurophysiol; 1997 Nov; 78(5):2531-45. PubMed ID: 9356403
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.