BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 17167089)

  • 1. AMPA/kainate receptors drive rapid output and precise synchrony in olfactory bulb granule cells.
    Schoppa NE
    J Neurosci; 2006 Dec; 26(50):12996-3006. PubMed ID: 17167089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current-source density analysis in the rat olfactory bulb: laminar distribution of kainate/AMPA- and NMDA-receptor-mediated currents.
    Aroniadou-Anderjaska V; Ennis M; Shipley MT
    J Neurophysiol; 1999 Jan; 81(1):15-28. PubMed ID: 9914263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synchronization of olfactory bulb mitral cells by precisely timed inhibitory inputs.
    Schoppa NE
    Neuron; 2006 Jan; 49(2):271-83. PubMed ID: 16423700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct Recording of Dendrodendritic Excitation in the Olfactory Bulb: Divergent Properties of Local and External Glutamatergic Inputs Govern Synaptic Integration in Granule Cells.
    Pressler RT; Strowbridge BW
    J Neurosci; 2017 Dec; 37(49):11774-11788. PubMed ID: 29066560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial Structure of Synchronized Inhibition in the Olfactory Bulb.
    Arnson HA; Strowbridge BW
    J Neurosci; 2017 Oct; 37(43):10468-10480. PubMed ID: 28947574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional Specialization of Interneuron Dendrites: Identification of Action Potential Initiation Zone in Axonless Olfactory Bulb Granule Cells.
    Pressler RT; Strowbridge BW
    J Neurosci; 2019 Dec; 39(49):9674-9688. PubMed ID: 31662426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of synaptic timing in the olfactory bulb by an A-type potassium current.
    Schoppa NE; Westbrook GL
    Nat Neurosci; 1999 Dec; 2(12):1106-13. PubMed ID: 10570488
    [TBL] [Abstract][Full Text] [Related]  

  • 8. AMPA autoreceptors drive correlated spiking in olfactory bulb glomeruli.
    Schoppa NE; Westbrook GL
    Nat Neurosci; 2002 Nov; 5(11):1194-202. PubMed ID: 12379859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gamma-frequency excitatory input to granule cells facilitates dendrodendritic inhibition in the rat olfactory Bulb.
    Halabisky B; Strowbridge BW
    J Neurophysiol; 2003 Aug; 90(2):644-54. PubMed ID: 12711716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synaptic sodium spikes trigger long-lasting depolarizations and slow calcium entry in rat olfactory bulb granule cells.
    Egger V
    Eur J Neurosci; 2008 Apr; 27(8):2066-75. PubMed ID: 18412627
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms governing dendritic gamma-aminobutyric acid (GABA) release in the rat olfactory bulb.
    Isaacson JS
    Proc Natl Acad Sci U S A; 2001 Jan; 98(1):337-42. PubMed ID: 11120892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple modes of synaptic excitation of olfactory bulb granule cells.
    Balu R; Pressler RT; Strowbridge BW
    J Neurosci; 2007 May; 27(21):5621-32. PubMed ID: 17522307
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Both electrical and chemical synapses mediate fast network oscillations in the olfactory bulb.
    Friedman D; Strowbridge BW
    J Neurophysiol; 2003 May; 89(5):2601-10. PubMed ID: 12740407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complementary postsynaptic activity patterns elicited in olfactory bulb by stimulation of mitral/tufted and centrifugal fiber inputs to granule cells.
    Laaris N; Puche A; Ennis M
    J Neurophysiol; 2007 Jan; 97(1):296-306. PubMed ID: 17035366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intraglomerular gap junctions enhance interglomerular synchrony in a sparsely connected olfactory bulb network.
    Pouille F; McTavish TS; Hunter LE; Restrepo D; Schoppa NE
    J Physiol; 2017 Sep; 595(17):5965-5986. PubMed ID: 28640508
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intracellular responses of identified rat olfactory bulb interneurons to electrical and odor stimulation.
    Wellis DP; Scott JW
    J Neurophysiol; 1990 Sep; 64(3):932-47. PubMed ID: 2230935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-lasting depolarizations in mitral cells of the rat olfactory bulb.
    Carlson GC; Shipley MT; Keller A
    J Neurosci; 2000 Mar; 20(5):2011-21. PubMed ID: 10684902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of lateral inhibition in the olfactory bulb: efficiency and modulation of spike-evoked calcium influx into granule cells.
    Egger V; Svoboda K; Mainen ZF
    J Neurosci; 2003 Aug; 23(20):7551-8. PubMed ID: 12930793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient activity induces a long-lasting increase in the excitability of olfactory bulb interneurons.
    Inoue T; Strowbridge BW
    J Neurophysiol; 2008 Jan; 99(1):187-99. PubMed ID: 17959743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional role of NMDA autoreceptors in olfactory mitral cells.
    Friedman D; Strowbridge BW
    J Neurophysiol; 2000 Jul; 84(1):39-50. PubMed ID: 10899181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.