These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 17167089)

  • 41. Calcium permeable AMPA receptors and autoreceptors in external tufted cells of rat olfactory bulb.
    Ma J; Lowe G
    Neuroscience; 2007 Feb; 144(3):1094-108. PubMed ID: 17156930
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cholecystokinin: an excitatory modulator of mitral/tufted cells in the mouse olfactory bulb.
    Ma J; Dankulich-Nagrudny L; Lowe G
    PLoS One; 2013; 8(5):e64170. PubMed ID: 23691163
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Serotonin increases synaptic activity in olfactory bulb glomeruli.
    Brill J; Shao Z; Puche AC; Wachowiak M; Shipley MT
    J Neurophysiol; 2016 Mar; 115(3):1208-19. PubMed ID: 26655822
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Temporal patterns and depolarizing actions of spontaneous GABAA receptor activation in granule cells of the early postnatal dentate gyrus.
    Hollrigel GS; Ross ST; Soltesz I
    J Neurophysiol; 1998 Nov; 80(5):2340-51. PubMed ID: 9819247
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors.
    Takahashi H; Ogawa Y; Yoshihara S; Asahina R; Kinoshita M; Kitano T; Kitsuki M; Tatsumi K; Okuda M; Tatsumi K; Wanaka A; Hirai H; Stern PL; Tsuboi A
    J Neurosci; 2016 Aug; 36(31):8210-27. PubMed ID: 27488640
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Postsynaptic glutamate receptors and integrative properties of fast-spiking interneurons in the rat neocortex.
    Angulo MC; Rossier J; Audinat E
    J Neurophysiol; 1999 Sep; 82(3):1295-302. PubMed ID: 10482748
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synaptic GABA(A) activation inhibits AMPA-kainate receptor-mediated bursting in the newborn (P0-P2) rat hippocampus.
    Lamsa K; Palva JM; Ruusuvuori E; Kaila K; Taira T
    J Neurophysiol; 2000 Jan; 83(1):359-66. PubMed ID: 10634879
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Contrasting short-term plasticity at two sides of the mitral-granule reciprocal synapse in the mammalian olfactory bulb.
    Dietz SB; Murthy VN
    J Physiol; 2005 Dec; 569(Pt 2):475-88. PubMed ID: 16166156
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-frequency oscillations are not necessary for simple olfactory discriminations in young rats.
    Fletcher ML; Smith AM; Best AR; Wilson DA
    J Neurosci; 2005 Jan; 25(4):792-8. PubMed ID: 15673658
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Contribution of a calcium-activated non-specific conductance to NMDA receptor-mediated synaptic potentials in granule cells of the frog olfactory bulb.
    Hall BJ; Delaney KR
    J Physiol; 2002 Sep; 543(Pt 3):819-34. PubMed ID: 12231641
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Direct excitation of mitral cells via activation of alpha1-noradrenergic receptors in rat olfactory bulb slices.
    Hayar A; Heyward PM; Heinbockel T; Shipley MT; Ennis M
    J Neurophysiol; 2001 Nov; 86(5):2173-82. PubMed ID: 11698509
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Glomerular synaptic responses to olfactory nerve input in rat olfactory bulb slices.
    Aroniadou-Anderjaska V; Ennis M; Shipley MT
    Neuroscience; 1997 Jul; 79(2):425-34. PubMed ID: 9200726
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Axonal sodium channel NaV1.2 drives granule cell dendritic GABA release and rapid odor discrimination.
    Nunes D; Kuner T
    PLoS Biol; 2018 Aug; 16(8):e2003816. PubMed ID: 30125271
    [TBL] [Abstract][Full Text] [Related]  

  • 54. An intracellular analysis of dendrodendritic inhibition in the turtle in vitro olfactory bulb.
    Jahr CE; Nicoll RA
    J Physiol; 1982 May; 326():213-34. PubMed ID: 7108788
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Olfactory bulb external tufted cells are synchronized by multiple intraglomerular mechanisms.
    Hayar A; Shipley MT; Ennis M
    J Neurosci; 2005 Sep; 25(36):8197-208. PubMed ID: 16148227
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrophysiology of interneurons in the glomerular layer of the rat olfactory bulb.
    McQuiston AR; Katz LC
    J Neurophysiol; 2001 Oct; 86(4):1899-907. PubMed ID: 11600649
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Reciprocal intraglomerular excitation and intra- and interglomerular lateral inhibition between mouse olfactory bulb mitral cells.
    Urban NN; Sakmann B
    J Physiol; 2002 Jul; 542(Pt 2):355-67. PubMed ID: 12122137
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Connexin36 mediates spike synchrony in olfactory bulb glomeruli.
    Christie JM; Bark C; Hormuzdi SG; Helbig I; Monyer H; Westbrook GL
    Neuron; 2005 Jun; 46(5):761-72. PubMed ID: 15924862
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adenosine A
    Rotermund N; Winandy S; Fischer T; Schulz K; Fregin T; Alstedt N; Buchta M; Bartels J; Carlström M; Lohr C; Hirnet D
    J Physiol; 2018 Feb; 596(4):717-733. PubMed ID: 29274133
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Cholinergic modulation of excitability in the rat olfactory bulb: effect of local application of cholinergic agents on evoked field potentials.
    Elaagouby A; Ravel N; Gervais R
    Neuroscience; 1991; 45(3):653-62. PubMed ID: 1775240
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.