BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 1716731)

  • 1. Differentiation of erythrocyte-(GLUT1), liver-(GLUT2), and adipocyte-type (GLUT4) glucose transporters by binding of the inhibitory ligands cytochalasin B, forskolin, dipyridamole, and isobutylmethylxanthine.
    Hellwig B; Joost HG
    Mol Pharmacol; 1991 Sep; 40(3):383-9. PubMed ID: 1716731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Forskolin inhibits insulin-stimulated glucose transport in rat adipose cells by a direct interaction with the glucose transporter.
    Joost HG; Steinfelder HJ
    Mol Pharmacol; 1987 Mar; 31(3):279-83. PubMed ID: 3470598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytochalasin B does not serve as a marker of glucose transport in rabbit erythrocytes.
    Albert SG
    Biochem Int; 1984 Jul; 9(1):93-103. PubMed ID: 6541046
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the glucose transporter compliment of metabolically important tissues from the Milan hypertensive rat.
    Campbell IW; Dominiczak AF; Livingstone C; Gould GW
    Biochem Biophys Res Commun; 1995 Jun; 211(3):780-91. PubMed ID: 7598707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stop-flow analysis of cooperative interactions between GLUT1 sugar import and export sites.
    Sultzman LA; Carruthers A
    Biochemistry; 1999 May; 38(20):6640-50. PubMed ID: 10350483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immobilized membrane vesicle or proteoliposome affinity chromatography. Frontal analysis of interactions of cytochalasin B and D-glucose with the human red cell glucose transporter.
    Brekkan E; Lundqvist A; Lundahl P
    Biochemistry; 1996 Sep; 35(37):12141-5. PubMed ID: 8810921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose transport activity and ligand binding (cytochalasin B, IAPS-forskolin) of chimeric constructs of GLUT2 and GLUT4 expressed in COS-7-cells.
    Wandel S; Buchs A; Schürmann A; Summers SA; Powers AC; Shanahan MF; Joost HG
    Biochim Biophys Acta; 1996 Oct; 1284(1):56-62. PubMed ID: 8865815
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isoforms of glucose transporter in the iris-ciliary body.
    Tsukamoto H; Mishima HK; Kurokawa T; Kiuchi Y; Sato E; Ishibashi S
    Jpn J Ophthalmol; 1995; 39(3):242-7. PubMed ID: 8577074
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cadmium increases GLUT1 substrate binding affinity in vitro while reducing its cytochalasin B binding affinity.
    Lachaal M; Liu H; Kim S; Spangler RA; Jung CY
    Biochemistry; 1996 Nov; 35(47):14958-62. PubMed ID: 8942661
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activation of Glut1 glucose transporter in human erythrocytes.
    Zhang JZ; Ismail-Beigi F
    Arch Biochem Biophys; 1998 Aug; 356(1):86-92. PubMed ID: 9681995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of conserved arginine and glutamate residues on the cytosolic surface of glucose transporters for transporter function.
    Schürmann A; Doege H; Ohnimus H; Monser V; Buchs A; Joost HG
    Biochemistry; 1997 Oct; 36(42):12897-902. PubMed ID: 9335548
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The glucose transporter in the plasma membrane of the outer segments of bovine retinal rods.
    Li XB; Szerencsei RT; Schnetkamp PP
    Exp Eye Res; 1994 Sep; 59(3):351-8. PubMed ID: 7821380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insulin-induced translocation of intracellular glucose transporters in the isolated rat adipose cell.
    Cushman SW; Wardzala LJ; Simpson IA; Karnieli E; Hissin PJ; Wheeler TJ; Hinkle PC; Salans LB
    Fed Proc; 1984 May; 43(8):2251-5. PubMed ID: 6370727
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ligand-induced conformational changes modify proteolytic cleavage of the adipocyte insulin-sensitive glucose transporter.
    Yano Y; May JM
    Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):183-8. PubMed ID: 8216214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK; Diamond DL; Heard KS; Carruthers A
    Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4.
    Katz EB; Stenbit AE; Hatton K; DePinho R; Charron MJ
    Nature; 1995 Sep; 377(6545):151-5. PubMed ID: 7675081
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calorie restriction improves whole-body glucose disposal and insulin resistance in association with the increased adipocyte-specific GLUT4 expression in Otsuka Long-Evans Tokushima fatty rats.
    Park SY; Choi GH; Choi HI; Ryu J; Jung CY; Lee W
    Arch Biochem Biophys; 2005 Apr; 436(2):276-84. PubMed ID: 15797240
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photolabelling of the liver-type glucose-transporter isoform GLUT2 with an azitrifluoroethylbenzoyl-substituted bis-D-mannose.
    Jordan NJ; Holman GD
    Biochem J; 1992 Sep; 286 ( Pt 2)(Pt 2):649-56. PubMed ID: 1530597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of glucose transporter (GLUT) gene expression in broiler chickens.
    Kono T; Nishida M; Nishiki Y; Seki Y; Sato K; Akiba Y
    Br Poult Sci; 2005 Aug; 46(4):510-5. PubMed ID: 16268111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.