These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 17167584)

  • 1. Fine frequency tuning in sum-frequency generation of continuous-wave single-frequency coherent light at 252 nm with dual-wavelength enhancement.
    Kumagai H
    Opt Lett; 2007 Jan; 32(1):62-4. PubMed ID: 17167584
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient sum-frequency generation of continuous-wave single-frequency coherent light at 252 nm with dual wavelength enhancement.
    Kumagai H; Midorikawa K; Iwane T; Obara M
    Opt Lett; 2003 Oct; 28(20):1969-71. PubMed ID: 14587792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a high-power deep-ultraviolet continuous-wave coherent light source for laser cooling of silicon atoms.
    Fujii T; Kumagai H; Midorikawa K; Obara M
    Opt Lett; 2000 Oct; 25(19):1457-9. PubMed ID: 18066247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Demonstration of long-term reliability of a 266-nm, continuous-wave, frequency-quadrupled solid-state laser using beta-BaB(2)O(4).
    Kondo K; Oka M; Wada H; Fukui T; Umezu N; Tatsuki K; Kubota S
    Opt Lett; 1998 Feb; 23(3):195-7. PubMed ID: 18084457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sum-frequency mixing of radiation from two extended-cavity laser diodes using a doubly resonant external cavity for laser cooling of trapped ytterbium ions.
    Sugiyama K; Kawajiri S; Yabu N; Matsumoto K; Kitano M
    Appl Opt; 2010 Oct; 49(29):5510-6. PubMed ID: 20935696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generation of continuous-wave ultraviolet light by sum-frequency mixing of diode-laser and argon-ion-laser radiation in beta-BaB(2)O(4).
    Sugiyama K; Yoda J; Sakurai T
    Opt Lett; 1991 Apr; 16(7):449-51. PubMed ID: 19773962
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunable single-frequency lasing in a microresonator.
    Herr SJ; Buse K; Breunig I
    Opt Express; 2019 May; 27(11):15351-15358. PubMed ID: 31163732
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation of all-solid-state, high-power continuous-wave 213-nm light based on sum-frequency mixing in CsLiB6O10.
    Sakuma J; Asakawa Y; Imahoko T; Obara M
    Opt Lett; 2004 May; 29(10):1096-8. PubMed ID: 15181997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous-wave sum-frequency generation near 194 nm in beta-BaB(2)O(4) crystals with an enhancement cavity.
    Watanabe M; Hayasaka K; Imajo H; Urabe S
    Opt Lett; 1992 Jan; 17(1):46-8. PubMed ID: 19784225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of continuous-wave 194-nm radiation by sum-frequency mixing in an external ring cavity.
    Hemmati H; Bergquist JC; Itano WM
    Opt Lett; 1983 Feb; 8(2):73-5. PubMed ID: 19714140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attaining 186-nm light generation in cooled beta-BaB(2)O(4) crystal.
    Kouta H; Kuwano Y
    Opt Lett; 1999 Sep; 24(17):1230-2. PubMed ID: 18073993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient generation of blue light by doubly resonant sum-frequency mixing in a monolithic KTP resonator.
    Risk WP; Kozlovsky WJ
    Opt Lett; 1992 May; 17(10):707-9. PubMed ID: 19794604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Third-harmonic-generation of a diode laser for quantum control of beryllium ions.
    Carollo RA; Lane DA; Kleiner EK; Kyaw PA; Teng CC; Ou CY; Qiao S; Hanneke D
    Opt Express; 2017 Apr; 25(7):7220-7229. PubMed ID: 28380847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooling of atoms using an optical frequency comb.
    Šantić N; Buhin D; Kovačić D; Krešić I; Aumiler D; Ban T
    Sci Rep; 2019 Feb; 9(1):2510. PubMed ID: 30792405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient generation of continuous-wave yellow light by single-pass sum-frequency mixing of a diode-pumped Nd:YVO(4) dual-wavelength laser with periodically poled lithium niobate.
    Chen YF; Tsai SW; Wang SC; Huang YC; Lin TC; Wong BC
    Opt Lett; 2002; 27(20):1809-11. PubMed ID: 18033370
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tunable continuous-wave doubly resonant optical parametric oscillator by use of a semimonolithic KTP crystal.
    Wang H; Ma Y; Zhai Z; Gao J; Xie C; Peng K
    Appl Opt; 2002 Feb; 41(6):1124-7. PubMed ID: 11900136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 626-nm single-frequency semiconductor laser system operated near room temperature for mW-level second-harmonic generation at 313 nm.
    Ohmae N; Katori H
    Rev Sci Instrum; 2019 Jun; 90(6):063201. PubMed ID: 31254994
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alexandrite laser frequency doubling in beta-BaB(2)O(4) crystals.
    Chen DW; Yeh JJ
    Opt Lett; 1988 Oct; 13(10):808-10. PubMed ID: 19746042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Orthogonally polarized dual-wavelength Nd:YAlO(3) laser at 1341 and 1339 nm and sum-frequency mixing for an emission at 670 nm.
    Lü Y; Xia J; Zhang J; Fu X; Liu H
    Appl Opt; 2014 Aug; 53(23):5141-6. PubMed ID: 25320922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Continuous-wave coherent ultraviolet source at 326 nm based on frequency trippling of fiber amplifiers.
    Kim JI; Meschede D
    Opt Express; 2008 Jul; 16(14):10803-8. PubMed ID: 18607495
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.