These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

399 related articles for article (PubMed ID: 17168027)

  • 41. Dynamics and responses to mortality rates of competing predators undergoing predator-prey cycles.
    Abrams PA; Brassil CE; Holt RD
    Theor Popul Biol; 2003 Sep; 64(2):163-76. PubMed ID: 12948678
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The contribution of trait-mediated indirect effects to the net effects of a predator.
    Peacor SD; Werner EE
    Proc Natl Acad Sci U S A; 2001 Mar; 98(7):3904-8. PubMed ID: 11259674
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Monoxenous and heteroxenous parasites of fish manipulate behavior of their hosts in different ways].
    Mikheev VN
    Zh Obshch Biol; 2011; 72(3):183-97. PubMed ID: 21786661
    [TBL] [Abstract][Full Text] [Related]  

  • 44. How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses.
    Boukal DS; Sabelis MW; Berec L
    Theor Popul Biol; 2007 Aug; 72(1):136-47. PubMed ID: 17296212
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Foraging strategy mediates ectotherm predator-prey responses to climate warming.
    Twardochleb LA; Treakle TC; Zarnetske PL
    Ecology; 2020 Nov; 101(11):e03146. PubMed ID: 32726861
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Prey density and the behavioral flexibility of a marine predator: the common murre (Uria aalge).
    Harding AM; Piatt JF; Schmutz JA; Shultz MT; Van Pelt TI; Kettle AB; Speckman SG
    Ecology; 2007 Aug; 88(8):2024-33. PubMed ID: 17824434
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Behaviourally mediated indirect effects: interference competition increases predation mortality in foraging redshanks.
    Minderman J; Lind J; Cresswell W
    J Anim Ecol; 2006 May; 75(3):713-23. PubMed ID: 16689954
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Outrun or Outmaneuver: Predator-Prey Interactions as a Model System for Integrating Biomechanical Studies in a Broader Ecological and Evolutionary Context.
    Moore TY; Biewener AA
    Integr Comp Biol; 2015 Dec; 55(6):1188-97. PubMed ID: 26117833
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The Impact of Selective Predation on Host-Parasite SIS Dynamics.
    Vitale C; Best A
    Bull Math Biol; 2019 Jul; 81(7):2510-2528. PubMed ID: 31144194
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predator-prey model with disease infection in both populations.
    Hsieh YH; Hsiao CK
    Math Med Biol; 2008 Sep; 25(3):247-66. PubMed ID: 18701422
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rabbits protecting birds: Hypopredation and limitations of hyperpredation.
    Bate AM; Hilker FM
    J Theor Biol; 2012 Mar; 297():103-15. PubMed ID: 22182755
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Applying predator-prey theory to modelling immune-mediated, within-host interspecific parasite interactions.
    Fenton A; Perkins SE
    Parasitology; 2010 May; 137(6):1027-38. PubMed ID: 20152061
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The dynamics of two diffusively coupled predator-prey populations.
    Jansen VA
    Theor Popul Biol; 2001 Mar; 59(2):119-31. PubMed ID: 11302757
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Plastic responses of a sessile prey to multiple predators: a field and experimental study.
    Hirsch PE; Cayon D; Svanbäck R
    PLoS One; 2014; 9(12):e115192. PubMed ID: 25517986
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Revisiting the classics: considering nonconsumptive effects in textbook examples of predator-prey interactions.
    Peckarsky BL; Abrams PA; Bolnick DI; Dill LM; Grabowski JH; Luttbeg B; Orrock JL; Peacor SD; Preisser EL; Schmitz OJ; Trussell GC
    Ecology; 2008 Sep; 89(9):2416-25. PubMed ID: 18831163
    [TBL] [Abstract][Full Text] [Related]  

  • 56. High variation in handling times confers 35-year stability to predator feeding rates despite community change.
    Novak M
    Ecology; 2023 Mar; 104(3):e3954. PubMed ID: 36495236
    [TBL] [Abstract][Full Text] [Related]  

  • 57. False Exclusion: A Case to Embed Predator Performance in Classical Population Models.
    Montagnes DJS; Zhu X; Gu L; Sun Y; Wang J; Horner R; Yang Z
    Am Nat; 2019 Nov; 194(5):654-670. PubMed ID: 31613665
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Host-Manipulation by Trophically Transmitted Parasites: The Switcher-Paradigm.
    Iritani R; Sato T
    Trends Parasitol; 2018 Nov; 34(11):934-944. PubMed ID: 30266447
    [TBL] [Abstract][Full Text] [Related]  

  • 59. How optimally foraging predators promote prey coexistence in a variable environment.
    Stump SM; Chesson P
    Theor Popul Biol; 2017 Apr; 114():40-58. PubMed ID: 27998797
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Predator functional response changed by induced defenses in prey.
    Hammill E; Petchey OL; Anholt BR
    Am Nat; 2010 Dec; 176(6):723-31. PubMed ID: 20954890
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.