These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 17168296)

  • 1. [New cellulases efficiently hydrolyzing lignocellulose pulp].
    Skomarovskiĭ AA; Markov AV; Gusakov AV; Kondrat'eva EG; Okunev ON; Bekkerevich AO; Matys VIu; Sinitsyn AP
    Prikl Biokhim Mikrobiol; 2006; 42(6):674-80. PubMed ID: 17168296
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A rapid microassay to evaluate enzymatic hydrolysis of lignocellulosic substrates.
    Berlin A; Maximenko V; Bura R; Kang KY; Gilkes N; Saddler J
    Biotechnol Bioeng; 2006 Apr; 93(5):880-6. PubMed ID: 16345088
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recycling cellulases during the hydrolysis of steam exploded and ethanol pretreated Lodgepole pine.
    Tu M; Chandra RP; Saddler JN
    Biotechnol Prog; 2007; 23(5):1130-7. PubMed ID: 17718502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Penicillium cellulases for total hydrolysis of lignocellulosics.
    Marjamaa K; Toth K; Bromann PA; Szakacs G; Kruus K
    Enzyme Microb Technol; 2013 May; 52(6-7):358-69. PubMed ID: 23608505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of Penicillium echinulatum and Trichoderma reesei cellulases in relation to their activity against various cellulosic substrates.
    Martins LF; Kolling D; Camassola M; Dillon AJ; Ramos LP
    Bioresour Technol; 2008 Mar; 99(5):1417-24. PubMed ID: 17408952
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enzymatic hydrolysis of steam-exploded and ethanol organosolv-pretreated Douglas-Firby novel and commercial fungal cellulases.
    Kurabi A; Berlin A; Gilkes N; Kilburn D; Bura R; Robinson J; Markov A; Skomarovsky A; Gusakov A; Okunev O; Sinitsyn A; Gregg D; Xie D; Saddler J
    Appl Biochem Biotechnol; 2005; 121-124():219-30. PubMed ID: 15917601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of oxidative enzymatic treatments on enzymatic hydrolysis of softwood.
    Palonen H; Viikari L
    Biotechnol Bioeng; 2004 Jun; 86(5):550-7. PubMed ID: 15129438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermostable enzymes in lignocellulose hydrolysis.
    Viikari L; Alapuranen M; Puranen T; Vehmaanperä J; Siika-Aho M
    Adv Biochem Eng Biotechnol; 2007; 108():121-45. PubMed ID: 17589813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating the distribution of cellulases and the recycling of free cellulases during the hydrolysis of lignocellulosic substrates.
    Tu M; Chandra RP; Saddler JN
    Biotechnol Prog; 2007; 23(2):398-406. PubMed ID: 17378581
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Studies of hydrolytic activity of enzyme preparations of Penicillium and Trychoderma fungi].
    Skomarovskiĭ AA; Gusakov AV; Okunev ON; Solov'eva IV; Bubnova TV; Kondrat'eva EG; Sinitsyn AP
    Prikl Biokhim Mikrobiol; 2005; 41(2):210-2. PubMed ID: 15859466
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of lignin-metal complexation on enzymatic hydrolysis of cellulose.
    Liu H; Zhu JY; Fu SY
    J Agric Food Chem; 2010 Jun; 58(12):7233-8. PubMed ID: 20509690
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Influence of the cycle number in processing of cellulose from waste paper on its ability to hydrolysis by cellulases].
    Morozova VV; Semenova MV; Rozhkova AM; Kondrat'eva EG; Okunev ON; Bekkarevich AO; Novozhilov EV; Sinitsin AP
    Prikl Biokhim Mikrobiol; 2010; 46(3):397-400. PubMed ID: 20586296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Saccharification of rice straw by cellulase from a local Trichoderma harzianum SNRS3 for biobutanol production.
    Rahnama N; Foo HL; Abdul Rahman NA; Ariff A; Md Shah UK
    BMC Biotechnol; 2014 Dec; 14():103. PubMed ID: 25496491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of oxygen delignification operating parameters on downstream enzymatic hydrolysis of softwood substrates.
    Charles N; Mansfield SD; Mirochnik O; Duff SJ
    Biotechnol Prog; 2003; 19(5):1606-11. PubMed ID: 14524725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization of enzyme complexes for lignocellulose hydrolysis.
    Berlin A; Maximenko V; Gilkes N; Saddler J
    Biotechnol Bioeng; 2007 Jun; 97(2):287-96. PubMed ID: 17058283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass spectrometric study of glucose and cellobiose produced during enzymatic hydrolysis of alpha-cellulose extracted from oak late-wood annual rings.
    Sensuła BM; Derrick PJ; Bickerton JC; Pazdur A
    Rapid Commun Mass Spectrom; 2009 Jul; 23(13):2070-4. PubMed ID: 19504493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of saccharification efficacy in the cellulase system of the brown rot fungus Gloeophyllum trabeum.
    Tewalt J; Schilling J
    Appl Microbiol Biotechnol; 2010 May; 86(6):1785-93. PubMed ID: 20177887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolysis of cellulose derived from steam exploded bagasse by Penicillium cellulases: comparison with commercial cellulase.
    Singh R; Varma AJ; Seeta Laxman R; Rao M
    Bioresour Technol; 2009 Dec; 100(24):6679-81. PubMed ID: 19683917
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synergy between pretreatment lignocellulose modifications and saccharification efficiency in two brown rot fungal systems.
    Schilling JS; Tewalt JP; Duncan SM
    Appl Microbiol Biotechnol; 2009 Sep; 84(3):465-75. PubMed ID: 19343340
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of cellulase, xylanase and beta-glucosidase activities by softwood lignin preparations.
    Berlin A; Balakshin M; Gilkes N; Kadla J; Maximenko V; Kubo S; Saddler J
    J Biotechnol; 2006 Sep; 125(2):198-209. PubMed ID: 16621087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.