These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

48 related articles for article (PubMed ID: 17168296)

  • 21. Thermostable enzymes in lignocellulose hydrolysis.
    Viikari L; Alapuranen M; Puranen T; Vehmaanperä J; Siika-Aho M
    Adv Biochem Eng Biotechnol; 2007; 108():121-45. PubMed ID: 17589813
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Alternatives to Trichoderma reesei in biofuel production.
    Gusakov AV
    Trends Biotechnol; 2011 Sep; 29(9):419-25. PubMed ID: 21612834
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deconstruction of lignocellulosic biomass to fuels and chemicals.
    Chundawat SP; Beckham GT; Himmel ME; Dale BE
    Annu Rev Chem Biomol Eng; 2011; 2():121-45. PubMed ID: 22432613
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The xylanolytic enzyme system from the genus Penicillium.
    Chávez R; Bull P; Eyzaguirre J
    J Biotechnol; 2006 Jun; 123(4):413-33. PubMed ID: 16569456
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lignin-Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass.
    Dos Santos AC; Ximenes E; Kim Y; Ladisch MR
    Trends Biotechnol; 2019 May; 37(5):518-531. PubMed ID: 30477739
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Pretreatment of lignocellulosic materials for efficient bioethanol production.
    Galbe M; Zacchi G
    Adv Biochem Eng Biotechnol; 2007; 108():41-65. PubMed ID: 17646946
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Industrial exploitation of renewable resources: from ethanol production to bioproducts development].
    Lopes Ferreira N
    J Soc Biol; 2008; 202(3):191-9. PubMed ID: 18980741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lignocellulosic residues: biodegradation and bioconversion by fungi.
    Sánchez C
    Biotechnol Adv; 2009; 27(2):185-94. PubMed ID: 19100826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Carbohydrate-binding modules of fungal cellulases: occurrence in nature, function, and relevance in industrial biomass conversion.
    Várnai A; Mäkelä MR; Djajadi DT; Rahikainen J; Hatakka A; Viikari L
    Adv Appl Microbiol; 2014; 88():103-65. PubMed ID: 24767427
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fungal cellulases.
    Payne CM; Knott BC; Mayes HB; Hansson H; Himmel ME; Sandgren M; Ståhlberg J; Beckham GT
    Chem Rev; 2015 Feb; 115(3):1308-448. PubMed ID: 25629559
    [No Abstract]   [Full Text] [Related]  

  • 31. Application of hydrolytic enzymes in the agricultural biogas production: results from practical applications in Germany.
    Gerhardt M; Pelenc V; Bäuml M
    Biotechnol J; 2007 Dec; 2(12):1481-4. PubMed ID: 18022860
    [No Abstract]   [Full Text] [Related]  

  • 32. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota.
    Ni J; Tokuda G
    Biotechnol Adv; 2013 Nov; 31(6):838-50. PubMed ID: 23623853
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cellulases and biofuels.
    Wilson DB
    Curr Opin Biotechnol; 2009 Jun; 20(3):295-9. PubMed ID: 19502046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detergent-compatible fungal cellulases.
    Niyonzima FN
    Folia Microbiol (Praha); 2021 Feb; 66(1):25-40. PubMed ID: 33184763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Progress and challenges in enzyme development for biomass utilization.
    Merino ST; Cherry J
    Adv Biochem Eng Biotechnol; 2007; 108():95-120. PubMed ID: 17594064
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Glycosyl hydrolases family 5, subfamily 5: Relevance and structural insights for designing improved biomass degrading cocktails.
    Neis A; da Silva Pinto L
    Int J Biol Macromol; 2021 Dec; 193(Pt A):980-995. PubMed ID: 34666133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mining metagenomes for novel cellulase genes.
    Duan CJ; Feng JX
    Biotechnol Lett; 2010 Dec; 32(12):1765-75. PubMed ID: 20640872
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plant pathogens as a source of diverse enzymes for lignocellulose digestion.
    Gibson DM; King BC; Hayes ML; Bergstrom GC
    Curr Opin Microbiol; 2011 Jun; 14(3):264-70. PubMed ID: 21536481
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Physical and chemical constraints in the hydrolysis of cellulose and lignocellulosic materials.
    Cowling EB
    Biotechnol Bioeng Symp; 1975; (5):163-81. PubMed ID: 1103987
    [No Abstract]   [Full Text] [Related]  

  • 40. β -Glucosidases from the fungus trichoderma: an efficient cellulase machinery in biotechnological applications.
    Tiwari P; Misra BN; Sangwan NS
    Biomed Res Int; 2013; 2013():203735. PubMed ID: 23984325
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.