These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

421 related articles for article (PubMed ID: 17168641)

  • 21. Rho-associated protein kinase 1 (ROCK1) is increased in Alzheimer's disease and ROCK1 depletion reduces amyloid-β levels in brain.
    Henderson BW; Gentry EG; Rush T; Troncoso JC; Thambisetty M; Montine TJ; Herskowitz JH
    J Neurochem; 2016 Aug; 138(4):525-31. PubMed ID: 27246255
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The antimicrobial protection hypothesis of Alzheimer's disease.
    Moir RD; Lathe R; Tanzi RE
    Alzheimers Dement; 2018 Dec; 14(12):1602-1614. PubMed ID: 30314800
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On the origin of Alzheimer's disease. Trials and tribulations of the amyloid hypothesis.
    Castello MA; Soriano S
    Ageing Res Rev; 2014 Jan; 13():10-2. PubMed ID: 24252390
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Why pleiotropic interventions are needed for Alzheimer's disease.
    Frautschy SA; Cole GM
    Mol Neurobiol; 2010 Jun; 41(2-3):392-409. PubMed ID: 20437209
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The amyloid cascade-inflammatory hypothesis of Alzheimer disease: implications for therapy.
    McGeer PL; McGeer EG
    Acta Neuropathol; 2013 Oct; 126(4):479-97. PubMed ID: 24052108
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Role of Amyloid-β and Tau Proteins in Alzheimer's Disease: Confuting the Amyloid Cascade.
    Gulisano W; Maugeri D; Baltrons MA; Fà M; Amato A; Palmeri A; D'Adamio L; Grassi C; Devanand DP; Honig LS; Puzzo D; Arancio O
    J Alzheimers Dis; 2018; 64(s1):S611-S631. PubMed ID: 29865055
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Beyond the sleep-amyloid interactions in Alzheimer's disease pathogenesis.
    Ning S; Jorfi M
    J Neurophysiol; 2019 Jul; 122(1):1-4. PubMed ID: 30864847
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synaptic Impairment in Alzheimer's Disease: A Dysregulated Symphony.
    Forner S; Baglietto-Vargas D; Martini AC; Trujillo-Estrada L; LaFerla FM
    Trends Neurosci; 2017 Jun; 40(6):347-357. PubMed ID: 28494972
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Development of SPECT Probes for In Vivo Imaging of β-Amyloid and Tau Aggregates in the Alzheimer's Disease Brain].
    Watanabe H
    Yakugaku Zasshi; 2017; 137(11):1361-1365. PubMed ID: 29093372
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Aβ and Tau Interact with Metal Ions, Lipid Membranes and Peptide-Based Amyloid Inhibitors: Are These Common Features Relevant in Alzheimer's Disease?
    Di Natale G; Sabatino G; Sciacca MFM; Tosto R; Milardi D; Pappalardo G
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014310
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neuropathology and biochemistry of Aβ and its aggregates in Alzheimer's disease.
    Thal DR; Walter J; Saido TC; Fändrich M
    Acta Neuropathol; 2015 Feb; 129(2):167-82. PubMed ID: 25534025
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dissecting the Contribution of Vascular Alterations and Aging to Alzheimer's Disease.
    Janota C; Lemere CA; Brito MA
    Mol Neurobiol; 2016 Aug; 53(6):3793-3811. PubMed ID: 26143259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Understanding molecular mechanisms of proteolysis in Alzheimer's disease: progress toward therapeutic interventions.
    Higuchi M; Iwata N; Saido TC
    Biochim Biophys Acta; 2005 Aug; 1751(1):60-7. PubMed ID: 16054018
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Neuronal heparan sulfates promote amyloid pathology by modulating brain amyloid-β clearance and aggregation in Alzheimer's disease.
    Liu CC; Zhao N; Yamaguchi Y; Cirrito JR; Kanekiyo T; Holtzman DM; Bu G
    Sci Transl Med; 2016 Mar; 8(332):332ra44. PubMed ID: 27030596
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The participation of insulin-like growth factor-binding protein 3 released by astrocytes in the pathology of Alzheimer's disease.
    Watanabe K; Uemura K; Asada M; Maesako M; Akiyama H; Shimohama S; Takahashi R; Kinoshita A
    Mol Brain; 2015 Dec; 8(1):82. PubMed ID: 26637371
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Antibody 9D5 recognizes oligomeric pyroglutamate amyloid-β in a fraction of amyloid-β deposits in Alzheimer's disease without cross-reactivity with other protein aggregates.
    Venkataramani V; Wirths O; Budka H; Härtig W; Kovacs GG; Bayer TA
    J Alzheimers Dis; 2012; 29(2):361-71. PubMed ID: 22232007
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The interactions of p53 with tau and Aß as potential therapeutic targets for Alzheimer's disease.
    Jazvinšćak Jembrek M; Slade N; Hof PR; Šimić G
    Prog Neurobiol; 2018 Sep; 168():104-127. PubMed ID: 29733887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical detection of Abeta isoforms: implications for pathogenesis, diagnosis, and treatment of Alzheimer's disease.
    Golde TE; Eckman CB; Younkin SG
    Biochim Biophys Acta; 2000 Jul; 1502(1):172-87. PubMed ID: 10899442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Progression of Alzheimer's disease, tau propagation, and its modifiable risk factors.
    Takeda S
    Neurosci Res; 2019 Apr; 141():36-42. PubMed ID: 30120962
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Subthreshold Amyloid Predicts Tau Deposition in Aging.
    Leal SL; Lockhart SN; Maass A; Bell RK; Jagust WJ
    J Neurosci; 2018 May; 38(19):4482-4489. PubMed ID: 29686045
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.