BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

400 related articles for article (PubMed ID: 17168725)

  • 21. Absolute binding free energy calculations: on the accuracy of computational scoring of protein-ligand interactions.
    Singh N; Warshel A
    Proteins; 2010 May; 78(7):1705-23. PubMed ID: 20186976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Advancing Drug Discovery through Enhanced Free Energy Calculations.
    Abel R; Wang L; Harder ED; Berne BJ; Friesner RA
    Acc Chem Res; 2017 Jul; 50(7):1625-1632. PubMed ID: 28677954
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing the performance of the molecular mechanics/Poisson Boltzmann surface area and molecular mechanics/generalized Born surface area methods. II. The accuracy of ranking poses generated from docking.
    Hou T; Wang J; Li Y; Wang W
    J Comput Chem; 2011 Apr; 32(5):866-77. PubMed ID: 20949517
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessing the performance of MM/PBSA and MM/GBSA methods. 9. Prediction reliability of binding affinities and binding poses for protein-peptide complexes.
    Weng G; Wang E; Chen F; Sun H; Wang Z; Hou T
    Phys Chem Chem Phys; 2019 May; 21(19):10135-10145. PubMed ID: 31062799
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Accurate Binding Free Energy Predictions in Fragment Optimization.
    Steinbrecher TB; Dahlgren M; Cappel D; Lin T; Wang L; Krilov G; Abel R; Friesner R; Sherman W
    J Chem Inf Model; 2015 Nov; 55(11):2411-20. PubMed ID: 26457994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Binding Free Energies of Conformationally Disordered Peptides Through Extensive Sampling and End-Point Methods.
    Nixon MG; Fadda E
    Methods Mol Biol; 2019; 2039():229-242. PubMed ID: 31342430
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Estimation of relative free energies of binding using pre-computed ensembles based on the single-step free energy perturbation and the site-identification by Ligand competitive saturation approaches.
    Raman EP; Lakkaraju SK; Denny RA; MacKerell AD
    J Comput Chem; 2017 Jun; 38(15):1238-1251. PubMed ID: 27782307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Explicitly solvated ligand contribution to continuum solvation models for binding free energies: selectivity of theophylline binding to an RNA aptamer.
    Freedman H; Huynh LP; Le L; Cheatham TE; Tuszynski JA; Truong TN
    J Phys Chem B; 2010 Feb; 114(6):2227-37. PubMed ID: 20099932
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ligand binding affinities from MD simulations.
    Aqvist J; Luzhkov VB; Brandsdal BO
    Acc Chem Res; 2002 Jun; 35(6):358-65. PubMed ID: 12069620
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Importance of ligand reorganization free energy in protein-ligand binding-affinity prediction.
    Yang CY; Sun H; Chen J; Nikolovska-Coleska Z; Wang S
    J Am Chem Soc; 2009 Sep; 131(38):13709-21. PubMed ID: 19736924
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Statistical Analysis on the Performance of Molecular Mechanics Poisson-Boltzmann Surface Area versus Absolute Binding Free Energy Calculations: Bromodomains as a Case Study.
    Aldeghi M; Bodkin MJ; Knapp S; Biggin PC
    J Chem Inf Model; 2017 Sep; 57(9):2203-2221. PubMed ID: 28786670
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model.
    Shivakumar D; Deng Y; Roux B
    J Chem Theory Comput; 2009 Apr; 5(4):919-30. PubMed ID: 26609601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An all atom energy based computational protocol for predicting binding affinities of protein-ligand complexes.
    Jain T; Jayaram B
    FEBS Lett; 2005 Dec; 579(29):6659-66. PubMed ID: 16307743
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evaluating the performance of MM/PBSA for binding affinity prediction using class A GPCR crystal structures.
    Yau MQ; Emtage AL; Chan NJY; Doughty SW; Loo JSE
    J Comput Aided Mol Des; 2019 May; 33(5):487-496. PubMed ID: 30989574
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Physics-based methods for studying protein-ligand interactions.
    Huang N; Jacobson MP
    Curr Opin Drug Discov Devel; 2007 May; 10(3):325-31. PubMed ID: 17554859
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Binding-affinity predictions of HSP90 in the D3R Grand Challenge 2015 with docking, MM/GBSA, QM/MM, and free-energy simulations.
    Misini Ignjatović M; Caldararu O; Dong G; Muñoz-Gutierrez C; Adasme-Carreño F; Ryde U
    J Comput Aided Mol Des; 2016 Sep; 30(9):707-730. PubMed ID: 27565797
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid estimation of relative protein-ligand binding affinities using a high-throughput version of MM-PBSA.
    Brown SP; Muchmore SW
    J Chem Inf Model; 2007; 47(4):1493-503. PubMed ID: 17518461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of end-point continuum-solvation methods for the calculation of protein-ligand binding free energies.
    Genheden S; Ryde U
    Proteins; 2012 May; 80(5):1326-42. PubMed ID: 22274991
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.